
Semantics-based Summarization of
Entities in Knowledge Graphs

A dissertation submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy

By

Kalpa Gunaratna
B.Sc., University of Colombo, 2008

2017
Wright State University

WRIGHT STATE UNIVERSITY
GRADUATE SCHOOL

April 19, 2017

I HEREBY RECOMMEND THAT THE DISSERTATION PREPARED UNDER MY SUPER-
VISION BY Kalpa Gunaratna ENTITLED Semantics-based Summarization of Entities in

Knowledge Graphs BE ACCEPTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR THE DEGREE OF Doctor of Philosophy.

Amit Sheth, Ph.D.
Dissertation Co-Director

Krishnaprasad Thirunarayan, Ph.D.
Dissertation Co-Director

Michael Raymer, Ph.D.
Director, Computer Science and Engineering
Ph.D. Program

Robert E.W. Fyffe, Ph.D.
Vice President for Research and Dean of the
Graduate School

Committee on Final Examination

Amit Sheth, Ph.D.

Krishnaprasad Thirunarayan, Ph.D.

Keke Chen, Ph.D.

Gong Cheng, Ph.D.

Edward Curry, Ph.D.

Hamid R. Motahari Nezhad, Ph.D.

ABSTRACT

Gunaratna, Kalpa. PhD, Department of Computer Science and Engineering, Wright State Univer-
sity, 2017. Semantics-based Summarization of Entities in Knowledge Graphs.

The processing of structured and semi-structured content on the Web has been gaining attention

with the rapid progress in the Linking Open Data project and the development of commercial knowl-

edge graphs. Knowledge graphs capture domain-specific or encyclopedic knowledge in the form of a

data layer and add rich and explicit semantics on top of the data layer to infer additional knowledge.

The data layer of a knowledge graph represents entities and their descriptions. The semantic layer on

top of the data layer is called the schema (ontology), where relationships of the entity descriptions,

their classes, and the hierarchy of the relationships and classes are defined. Today, there exist large

knowledge graphs in the research community (e.g., encyclopedic datasets like DBpedia and Yago)

and corporate world (e.g., Google knowledge graph) that encapsulate a large amount of knowledge

for human and machine consumption. Typically, they consist of millions of entities and billions of

facts describing these entities. While it is good to have this much knowledge available on the Web for

consumption, it leads to information overload, and hence proper summarization (and presentation)

techniques need to be explored.

In this dissertation, we focus on creating both comprehensive and concise entity summaries at:

(i) the single entity level and (ii) the multiple entity level. To summarize a single entity, we propose

a novel approach called FACeted Entity Summarization (FACES) that considers importance, which

is computed by combining popularity and uniqueness, and diversity of facts getting selected for the

summary. We first conceptually group facts using semantic expansion and hierarchical incremental

clustering techniques and form facets (i.e., groupings) that go beyond syntactic similarity. Then

we rank both the facts and facets using Information Retrieval (IR) ranking techniques to pick the

iii

highest ranked facts from these facets for the summary. The important and unique contribution

of this approach is that because of its generation of facets, it adds diversity into entity summaries,

making them comprehensive. For creating multiple entity summaries, we propose RElatedness-based

Multi-Entity Summarization (REMES) approach that simultaneously processes facts belonging to

the given entities using combinatorial optimization techniques. In this process, we maximize diversity

and importance of facts within each entity summary and relatedness of facts between the entity

summaries. The proposed approach uniquely combines semantic expansion, graph-based relatedness,

and combinatorial optimization techniques to generate relatedness-based multi-entity summaries.

Complementing the entity summarization approaches, we introduce a novel approach using light

Natural Language Processing (NLP) techniques to enrich knowledge graphs by adding type se-

mantics to literals. This makes datatype properties semantically rich compared to having only

implementation types. As a result of the enrichment process, we could use both object and datatype

properties in the entity summaries, which improves coverage. Moreover, the added type semantics

can be useful in other applications like dataset profiling and data integration. We evaluate the

proposed approaches against the state-of-the-art methods and highlight their capabilities for single

and multiple entity summarization.

iv

Contents

1 Introduction 1

1.1 Concepts of Entities, Knowledge Graphs, and Entity Summaries 3

1.1.1 Entities and Knowledge Graphs . 4

1.1.2 Entity Summaries . 6

1.2 Challenges in Automatic Entity Summarization . 7

1.3 Why? and What? . 8

1.4 Thesis Statement . 9

1.5 Entity Summarization Framework (How?) and Dissertation Focus 9

1.5.1 Single Entity Summarization . 10

1.5.1.1 Semantic Expansion . 11

1.5.1.2 Semantic Enrichment . 12

1.5.1.3 Conceptual Grouping . 12

1.5.1.4 Ranking and Faceted Entity Summary Creation 13

1.5.2 Multi-Entity Summarization . 14

1.5.2.1 Relatedness and Ranking . 14

1.5.2.2 Optimization and Multi-Entity Summary Creation 15

1.5.3 Dissertation Focus . 15

1.6 Dissertation Organization . 17

v

2 Background and Related Work 19

2.1 WWW, Semantic Web, and Knowledge Representation 19

2.2 Entity Summarization . 24

2.2.1 Single Entity Summarization . 24

2.2.2 Multi-Entity Summarization . 27

3 Diversity-Aware Single Entity Summarization 29

3.1 Preliminaries . 31

3.2 Faceted Entity Summarization . 32

3.2.1 Partitioning Algorithm - Cobweb . 34

3.2.1.1 Cobweb . 34

3.2.2 Faceted Entity Summary Approach . 38

3.2.2.1 Partitioning the Feature Set - Creating Facets 38

3.2.2.2 Ranking Features . 43

3.2.2.3 Faceted Entity Summary Creation 44

3.3 Evaluation . 45

3.3.1 Evaluating with the Gold Standard . 47

3.3.2 Evaluating with User Preference . 49

3.4 Discussion . 49

3.5 Conclusion . 51

4 Typing Literals in RDF Triples for Improving Coverage of Features in Entity

Summarization 52

4.1 Typing Literals in RDF Triples . 54

4.1.1 Object Property and Datatype Property . 54

4.1.2 Problem Analysis . 55

4.1.2.1 Problem Statement . 56

vi

4.1.3 Type Generation for Literals . 57

4.1.4 Evaluating Type Generation for Datatype Property Values 60

4.2 Incorporating Datatype Properties into Faceted Entity Summaries 62

4.2.1 Problem Statement . 62

4.2.2 Grouping Datatype Property Features . 63

4.2.3 Ranking Datatype Property Features . 63

4.2.4 Faceted Entity Summaries using Object and Datatype Properties 65

4.2.5 Evaluating Faceted Entity Summaries with Both Types of Properties 66

4.3 Discussion . 68

4.4 Conclusion . 70

5 Relatedness-based Multi-Entity Summarization 71

5.1 Multi-Entity Summarization . 73

5.1.1 Problem Statement and Description . 73

5.1.2 Approach . 74

5.1.2.1 Selecting Features for an Entity . 74

5.1.2.2 Selecting Features for Multiple Entities 75

5.1.2.3 Importance, Relatedness and Diversity 77

5.2 Evaluation . 80

5.2.1 Implementation Details and Algorithm Settings 80

5.2.2 Datasets and Evaluation Setting . 82

5.2.2.1 Qualitative Evaluation . 82

5.2.2.2 Quantitative Evaluation . 83

5.2.3 Discussion . 84

5.3 Conclusion . 85

vii

6 Enrichment and Usage of Structured Knowledge - two use-cases 86

6.1 Identifying Equivalent Properties between Linked Datasets 87

6.1.1 Related Work . 87

6.1.2 Approach . 89

6.1.2.1 Property Alignment between Datasets 89

6.1.2.2 Resource Matching and Generating Property Alignments 92

6.1.3 Evaluation . 98

6.1.4 Discussion . 103

6.1.5 Future Work and Conclusion . 105

6.2 Using Structured Knowledge for Document Similarity 106

6.2.1 Related Work . 108

6.2.2 Approach . 108

6.2.3 Evaluation . 112

6.2.4 Discussion . 113

6.2.5 Future Work and Conclusion . 115

7 Conclusion and Future Work 117

7.1 Single Entity Summarization . 117

7.1.1 Future Work . 119

7.2 Multi-Entity Summarization . 119

7.2.1 Future Work . 120

Bibliography 121

viii

List of Figures

1.1 Sample entity description of the entity Marie Curie. 4

1.2 Entity summaries shown in (a) Google Search and (b) Bing Search, at the top right-

hand corner of the search page. 6

1.3 Diversity-aware entity summarization framework for individual and multiple entities. 10

2.1 Rich Media Reference system in early 2000s for different domains. 21

2.2 Example triple and its RDF/Turtle representation. 21

2.3 LOD cloud diagram in 2017 (as of April). See http://lod-cloud.net/ for details. . . . 23

3.1 Facets of entity - Marie Curie. Values for conceptually similar features are in the

same color pattern. 33

3.2 Merging in Cobweb. 37

3.3 Splitting in Cobweb. 38

3.4 Feature expansion using WordNet and type information. 42

3.5 Flow of steps in creating faceted entity summaries. 44

3.6 Entity summaries for the entity Marie Curie by each system. k = 5 and the size of

feature set is 39. 50

4.1 An object and datatype property instances for the entity Barack Obama in DBpedia.

dbo, dbp, and dbr represent http://dbpedia.org/ontology, http://dbpedia.org/property,

and http://dbpedia.org/resource namespaces, respectively. 55

ix

4.2 Two triples corresponding to datatype properties and one triple corresponding to an

object property taken from DBpedia. Computed types are shown in dashed boxes.

dbo, dbp, and dbr represent http://dbpedia.org/ontology, http://dbpedia.org/property,

and http://dbpedia.org/resource namespaces, respectively. 56

4.3 Grouping both property features. dbo:birthPlace and dbp:vicePresident are object

properties and dbp:shortDescription is a datatype property. dbo, dbp, and dbr repre-

sent http://dbpedia.org/ontology, http://dbpedia.org/property, and http://dbpedia.org/resource

namespaces, respectively. 64

5.1 Entity summaries maximizing relatedness between them for a news item from Wikinews

corpus. 72

5.2 Example entity summaries for two entities . 84

6.1 Process of Candidate Matching. Matching resources are in the same color/pattern. . 92

6.2 Property matching with overlapping sets of resources 93

6.3 Calculating MatchCount and Co-appearanceCount values 95

6.4 Precision, Recall and F measures for varying α values 100

6.5 Overview of the approach. 109

6.6 Jaccard similarity computation example for two concepts. 110

6.7 predication - predication similarity computation example for two predicates. 111

6.8 Results against the PubMed related citation gold standard using top n documents. . 113

x

List of Tables

1.1 Statistics of some known knowledge graphs . 5

3.1 Cobweb operations . 39

3.2 Evaluation of the summary quality and FACES %↑ = 100 * (FACES avg. quality

- Other system’s avg. quality) / (Other system’s avg. quality) for k=5 and k=10,

respectively, and average time taken per entity for k=5 for Evaluation 1. Evaluation

2 measures user preference % for each system. (NA stands for Not Applicable) . . . 48

4.1 Types generated for a sample of values. 60

4.2 Type generation evaluation. DBpedia Spotlight is used as the baseline system. . . . 61

4.3 Evaluation of the summary quality (average for 80 entities) and %↑ = 100 * (FACES-

E avg. quality - Other system avg. quality) / (Other system avg. quality) for k=5

and k=10, where k is the summary length. 67

5.1 Evaluating system summaries using questionnaire. 81

5.2 Average coherency of different models . 82

6.1 Alignment results of object properties. Experiments are numbered 1 to 5. 99

6.2 Sample of matching properties under different categories. namespaces: db for DBpe-

dia and fb for Freebase. 102

xi

ACKNOWLEDGEMENTS

I would like to acknowledge and thank my advisers Prof. Amit Sheth and Prof. Krishnaprasad

Thirunarayan. I remember the day I first contacted Prof. Sheth with my ambition to join the

Ohio Center of Excellence in Knowledge-enabled Computing (Kno.e.sis) at Wright State University.

From the very first day, Prof. Sheth demanded high quality outcomes which led to the successful

completion of my PhD. He often reminded me the importance of taking the initiative and par-

ticipating in activities and professional services that go beyond my focused research (to overcome

the unfair advantage of the others) to compete with the best in the world. Organizing SumPre

workshop series at ESWC conference, doing high quality internships, participating in hackathons,

and serving in program committees are some of them. In fact, I decided to join Kno.e.sis for my

graduate studies mainly because of Prof. Sheth’s experience and excellence in the field and world

class achievements of Kno.e.sis students. Prof. Sheth was patient with me during the early days

of my PhD and supported me by providing the necessary resources, a nurturing ecosystem, and

with his vast knowledge, experience, and time. With Prof. Sheth’s initiation, I started working

closely with Prof. Krishnaprasad Thirunarayan (a.k.a Prof. T.K. Prasad) after joining Kno.e.sis

who later became my co-adviser. I must say that I thoroughly enjoyed exchanging ideas with Prof.

Prasad and am thankful for all the hard work he put into improving my technical and soft skills.

Prof. Prasad was always there to discuss research ideas and technical details related to my research

problems. I have fond memories of spending hours with him discussing last minute edits when we

submitted manuscripts for publication. His guidance in technical writing and algorithmic analysis

greatly helped me to develop myself over the years.

I would like to thank Prof. Gong Cheng, Dr. Edward Curry, Dr. Hamid Motahari, and Dr.

Olivier Bodenreider for their sincere support. Prof. Gong Cheng is an expert in the area of Semantic

xii

Web and summarization and I learned a lot collaborating with him. He possesses excellent technical

and theoretical knowledge and guided me in getting high quality research publications. Dr. Edward

Curry was my mentor during my first internship. I enjoyed working with him and I believe he

influenced and motivated me in my early days in the PhD program to work hard and to never give

up. Dr. Hamid Motahari was my mentor during my last internship and I am thankful to him for

giving me the opportunity to work on a real-world enterprise research problem. He helped me to

improve my self-confidence in doing research. Dr. Olivier Bodenreider was my mentor during my

second internship and I am glad that I had the opportunity to work with him. He taught me how

to think about a research problem and gave me the freedom to do research in line with my interests,

which helped me to start growing as an independent researcher.

I am grateful for all the love and encouragement from my wife Ronali Gunaratna and daughter

Katelyn Gunaratna, my parents Susil Gunaratna and Shirani Gunaratna, my sister Nishadi Fernando

and her family, my wife’s parents Ravi Perera, Belinda Perera, and brother in-law Ryan Perera, and

all the cousins. They helped me overcome many tough situations over the years.

I would also like to acknowledge several influential people who helped, guided, and advised me

along this journey towards achieving a PhD. I thank Dr. Gamini Palihawadana for motivating,

encouraging, and supporting me in many ways over the years. Special thanks to Prasantha War-

nakula, Palitha Perera, Anil Jayawardena, Kithsiri Perera, Rose Gunaratna, Gamini Ratnayake,

Rohan Wijesinghe, Amaradasa Kodikara, and Leslie Silva.

I enjoyed exchanging research ideas, life experiences, and jokes with my colleagues at Kno.e.sis

over the years. The list is too long to mention each and every one of them. I want to thank Tonya

Davis, administrative assistant at Kno.e.sis for the support over the years. My special thanks to

Dr. Ajith Ranabahu for helping me out when I first joined Kno.e.sis in many ways, from providing

lodging to being a close friend and looking after me. He was also my first mentor in my PhD

program. I would also like to mention Dr. Thilina Gunarathne who helped me in finding a good

graduate program. I also thank the Sri Lankan community in Dayton Ohio for providing me a home

xiii

away from home and Dr. Shiral Fernando, Dr. Anil Fernando, and their families for always being

there for us.

This dissertation is based upon work supported by the National Science Foundation (NSF)

and National Institute of Health (NIH). NSF provided support through Grant No. 1143717 III:

EAGER Expressive Scalable Querying over Linked Open Data, and Grant No. EAR 1520870:

Hazard-SEES:Social and Physical Sensing Enabled Decision Support for Disaster Management and

Response. NIMH of the NIH provided support under award number R01MH105384-01A1. Any

opinions, findings, and conclusions or recommendations expressed in this material are those of the

author(s) and do not necessarily reflect the views of the NSF or NIH.

xiv

Dedicated to

my parents, Susil and Shirani Gunaratna for their love and sacrifices

my lovely wife Ronali Gunaratna for her endless support and our little daughter Katelyn

Gunaratna for bringing us endless joy in life!

xv

1

Introduction

Publishing structured machine readable data on the Web for wide-scale use has been gaining at-

tention in the recent past mainly due to the introduction of the Linking Open Data initiative and

set of principles called Linked Data Principles [Berners-Lee 2006] that encouraged data publication

and re-use. Following these guidelines, people and communities have created the Linked Open Data

(LOD) cloud1. The LOD cloud consists of datasets that are inter-linked and have Uniform Resource

Identifiers (URIs) to represent resources that can be dereferenced. It has grown from 295 datasets in

2011 to 1146 datasets in 2017 (as of January), which is also accessible online. Some of these datasets

are encyclopedic knowledge graphs, like DBpedia [Lehmann et al. 2015], and domain specific, like

LinkedMDB [Hassanzadeh and Consens 2009] for movies and LinkedGeoData [Auer et al. 2009] for

geographic locations. We refer to a dataset as a knowledge graph in this dissertation when its rep-

resentation is rich with semantics and additional knowledge. Semantics are introduced by adding a

rich schema on top of the data level of the dataset. Further, a good schema is important in modeling

concepts (classes) and relationships between them, which in turn facilitates making inferences from

the data level of the knowledge graphs. Therefore, knowledge graphs can help machines understand

and process data intelligently. In addition to the growth in the number of datasets in LOD, the

content in some of the datasets has also evolved significantly over time. For example, in 2007 DB-

1http://lod-cloud.net/, accessed 04/10/2017

1

2

pedia English version 2.0 describes 1.95 million entities, whereas in 2016 DBpedia English version

2016-04 describes 6 million entities2. Further, the number of facts describing each resource has also

increased, providing more information to data consumers.

In the enterprise environment, knowledge graphs are becoming increasingly popular in modeling

and representing world knowledge that in turn can make commercial applications more intelligent.

The earliest efforts in this direction came with the rise of the Semantic Web technologies. The

concept of creating a rich dataset (what we refer to as knowledge graph now) was proposed in

the implementation efforts of Taalee system [Sheth et al. 2001]. They built a knowledge graph

combining “WorldModel” (definitional component as the ontology) and knowledge base (assertional

component as the data layer) to capture knowledge on the Web to support semantic search and

faceted information presentation to the users. This was termed as “Rich Media Reference” [Sheth

et al. 2002]3. Since the early inception of these ideas, Google Knowledge Graph [Singhal 2012] and

Bing Satori [Qian 2013] have emerged as two of the prominent commercial knowledge graphs to

facilitate Google search4 and Bing search5 respectively on a massive scale. When Google Knowledge

Graph was in the initial stages, it had around 570 million entities and 18 billion facts6. Knowledge

graph creation is supervised by human experts and involves much manual effort to ensure high

quality but recently there have been efforts like Google Knowledge Vault [Dong et al. 2014] that

automate this process at commercial scale but its success is doubtful as of today. There are also

different kinds of knowledge graphs that serve specific purposes. For example, Amazon’s product

graph facilitates product search on Amazon, and Facebook’s social graph captures social network

details to improve interactions among its users. In this dissertation, we focus on processing data

on the knowledge graphs (like DBpedia and Google knowledge graphs) that contain facts describing

2http://wiki.dbpedia.org/dbpedia-version-2016-04, accessed 04/10/2017
3This idea is similar to Google search summary box information presentation.
4https://www.google.com/, accessed 04/10/2017
5http://www.bing.com/, accessed 04/10/2017
6http://insidesearch.blogspot.com/2012/12/get-smarter-answers-from-knowledge_4.html, accessed

04/10/2017

1.1. CONCEPTS OF ENTITIES, KNOWLEDGE GRAPHS, AND ENTITY SUMMARIES 3

entities for general purpose consumption. Note that the techniques we discuss here are not restricted

to general purpose or encyclopedic knowledge graphs.

Human consumption of structured data published on the Web (e.g., DBpedia) or stored in pro-

prietary storage facilities (e.g., Bing Satori) as knowledge graphs is hard due to their large volume

(i.e., information overload). For example, on average, DBpedia 2016-04 version has over 200 facts

describing each entity. Processing this much information for quick understanding of a entity for

a human user is very inefficient and impractical. Therefore, a better representation mechanism is

required. Generating summaries is a method that has been used for many years by the linguists

to address this issue. Merriam-Webster dictionary7 defines a summary as “using few words to give

the most important information about something”. Summarization is the process of producing sum-

maries. Text summarization 8 has been widely used in the digital context (Web documents) as well

as printed formats to provide quick insights of the documents by retrieving popular and important

topics [Jones 2007; Gambhir and Gupta 2017]. Similarly, summaries for entities in knowledge graphs

can facilitate quick understanding of them without the need to look at their complete descriptions.

Summaries are short (i.e., concise) but they may not always be comprehensive. When facts

selected in a summary are diverse, comprehensiveness of length-limited summaries is improved. We

introduce two diversity-aware summarization approaches in two different settings. The first applies

to the processing of individual entities and the second to the processing of collections of entities.

1.1 Concepts of Entities, Knowledge Graphs, and Entity Sum-

maries

We introduce the terms entity, knowledge graph, and entity summary in the following sections.

7http://www.merriam-webster.com/dictionary/summary, accessed 04/10/2017
8Also known as document summarization

1.1. CONCEPTS OF ENTITIES, KNOWLEDGE GRAPHS, AND ENTITY SUMMARIES 4

Pierre_Curie

Warsaw

Passy,_Haute-

Savoie

ESPCI_ParisTechUniversity_of_Paris

Radioactivity

Chemistry

B
ir

th

P
la

ce

KnownFor

Marie_Curie

property value

Figure 1.1: Sample entity description of the entity Marie Curie.

1.1.1 Entities and Knowledge Graphs

Entities refer to real-world things and they can be described using facts. Hence, capturing entity

descriptions in a machine readable format enables machines to process and understand the world. See

Figure 1.1 for an example that shows a subset of facts of the entity description for the entity Marie

Curie taken from DBpedia. An entity description comprises facts (referred to as features) describing

the entity, and each fact is made up of a property-value pair. A property is the relationship that

describes the connection of the entity to the value. For simplicity, all the values shown in Figure 1.1

are entities, whereas they can also be literals. Entities are useful in many applications of today’s

data-rich world like answering search queries and understanding documents by analyzing entities

and their relationships. Specifically, complex questions can be answered by analyzing the graph

structure of the entities in the knowledge graph and inferring new knowledge. Google expressed

this capability by stating “Things but not Strings” [Singhal 2012]. By mapping strings (literals)

into entities when appropriate, machines can better understand and relate to the content in an

application since each entity has its own description to compare against others9. Along this line,

Schema.org project was initiated by major search engine companies (including Google, Microsoft,

9http://searchengineland.com/future-seo-understanding-entity-search-172997, accessed 04/10/2017

1.1. CONCEPTS OF ENTITIES, KNOWLEDGE GRAPHS, AND ENTITY SUMMARIES 5

Knowledge Graph
Entity

Types

Entity

Instances

Relation

Types

Facts

Google Knowledge Graph 1,500 570M 35,000 18,000M

Freebase 1,500 40M 35,000 637M

YAGO2 350,000 9.8M 100 4M

NELL 271 5.19M 306 0.435M

DBpedia (2016-04-English) 754 6M 2,711 1,300M

Table 1.1: Statistics of some known knowledge graphs

taken from [Dong et al. 2014] and DBpedia statistics 10.

and Yahoo) to improve visibility of Web document content by annotating entities with their types

using Schema.org taxonomy.

Knowledge graphs consist of large number of entities, their descriptions, and the relationships

among them at the data level. There is a schema level on top of the data level to add semantics for

the knowledge graphs where concepts (classes that the entities belong) and relationships (to connect

entities with information) are defined. The number of entities and facts in a knowledge graph can

be in the millions and billions, respectively, and Table 1.1 presents statistics of some of the popular

knowledge graphs on the Web. The statistics, except for DBpedia, are taken from [Dong et al.

2014]. In today’s digital and knowledge-empowered world, knowledge graphs play a significant role

in making computers smart and intelligent. For example, the search engines Google and Bing use

their respective knowledge graphs to answer entity-related user queries and interact with the users.

Moreover, comprehensive knowledge graphs act as connecting hubs for online data publishing. For

example, DBpedia is an encyclopedic dataset and a knowledge graph created by extracting facts

from Wikipedia11 that acts as a central hub in the LOD cloud. Many datasets have links going into

and coming out of DBpedia that make it a search entry point for many datasets on LOD.

11https://www.wikipedia.org/, accessed 04/10/2017

1.1. CONCEPTS OF ENTITIES, KNOWLEDGE GRAPHS, AND ENTITY SUMMARIES 6

(a) (b)

Figure 1.2: Entity summaries shown in (a) Google Search and (b) Bing Search, at the top right-hand

corner of the search page.

1.1.2 Entity Summaries

[Cheng et al. 2011] defined an entity summary as a selected subset of features of the original entity

description. Creating entity summaries out of their descriptions in the knowledge graphs is a well

motivated task. For example, Google identified the importance and significance of entity summaries

and considers it high priority in their knowledge graph building effort [Singhal 2012].

Entity summaries are important for quick understanding and analysis of content. The modern

Web search task is one such obvious example use case. For example, consider Figure 1.2 which

shows screenshots taken from Google Search and Bing Search when searching for the entity Marie

Curie. We can see the summary generated for Marie Curie by Google in Figure 1.2 (a) and Bing

in Figure 1.2 (b), where the purpose is to help the user understand and verify the information

need, without going through a lengthy entity description. Further, entity summaries can be helpful

in facilitating certain technical tasks like entity linking, where summaries assist human users in

1.2. CHALLENGES IN AUTOMATIC ENTITY SUMMARIZATION 7

selecting the correct entity from a knowledge graph to link to an entity label in document content

by analyzing only the summary [Cheng et al. 2015b].

1.2 Challenges in Automatic Entity Summarization

Automatically generating entity summaries from the entity descriptions has its own challenges.

The most challenging problem is the selection of important features for a given summary length

constraint. This can also be positioned as a personalization problem, but in this dissertation our

main focus is on general purpose entity summary creation. That is, how to create entity summaries

for the entire population of users. In fact, personalization can be applied as an add-on to the

summarization approach by modifying the ranking algorithms.

The problem of selecting a subset of features as the entity summary can be positioned as a

ranking problem where top-k features can be selected as the summary. But, in practice, a pure

ranking algorithm can be less effective because ranking alone cannot determine what kinds of features

are selected for the summary. For example, consider a two feature summary for an entity listing

birthplace and deathplace simply because the ranking algorithm ranked them higher than the others

(e.g., they are more popular). In this case, we refer to this entity summary as less diverse. We could

argue that diversity introduces comprehensiveness to the summary as it tries to provide a complete

overview of the entity given the length constraint of the summary.

Adding diversity to entity summarization is challenging as we are referring to something that

goes beyond analyzing syntactic dissimilarities. To achieve this kind of intelligence, we can look

for semantics present in the knowledge graphs (schema level) and external knowledge sources. For

example, entities are normally associated with type semantics. That is, an entity can be assigned

a concept (an ontology class) as its type (e.g., the entity Barack Obama is typed as a Politician in

DBpedia). But sometimes, a value in the entity description can be a literal (e.g., string). In this

case, there is no explicit semantics associated with the value, and hence it is difficult to process them

1.3. WHY? AND WHAT? 8

intelligently. To bridge this gap, knowledge enrichment can be performed by computing semantic

types (ontology classes) of the literals where applicable.

On the other hand, processing multiple entities to create entity summaries is non-trivial because:

(i) there is more than one entity to consider in selecting features for the summaries and (ii) the

objectives we want to achieve (diversity, relatedness, uniqueness, etc.) need to be satisfied for more

than one entity at the same time (multiple constraints). For example, we would like to have diversity

within an entity summary but relatedness among the summaries for the entire collection of entities.

To satisfy these somewhat competing objectives, we need to employ techniques that can handle more

than one entity at a time at different granularity (intra-entity vs. inter-entity).

In this dissertation, we present an intelligent framework to generate diversified entity summaries

that have the qualities of conciseness and comprehensiveness considering individual entities and

collections of entities.

1.3 Why? and What?

We discuss the importance of entity summarization and what we propose in this context briefly.

Why?

• Creating summaries has been the go-to method in conveying important information in less

time and has practical value. For example, document summaries provide a quick glance of the

content before a user can explore them. Entity descriptions, similar to web documents or text,

are lengthy and hence require concise presentation.

• Entity summarization problem cannot be fulfilled by just “reusing” techniques proposed in In-

formation Retrieval (IR) or Artificial Intelligence (AI) to handle related problems like document

summarization and ranking. Entities are similar and also different in many ways to Web docu-

ments or text. Hence, challenges in (i) processing, (ii) analyzing, and (iii) computing them need

1.4. THESIS STATEMENT 9

to be addressed in new or complementary ways.

• Entities and their descriptions (can) capture world knowledge and are important for modeling

world and human knowledge. Summarizing them to help specific tasks (e.g., resource linking) or

general purpose content understanding (e.g., web search assistance) is necessary in the modern

world.

What?

• We propose methods to create entity summaries that preserve “conciseness” and “comprehen-

siveness” (through diversity). Being concise provides quick processing of features and compre-

hensiveness provides better coverage of features.

• We generate entity summaries for single and multiple (collection of) entities.

1.4 Thesis Statement

Entity related structured data on the Web can be concisely and comprehensively summarized for

efficient and convenient information presentation. This can be achieved through synergistic use of:

(i) Unsupervised knowledge-based methods to conceptually group, (ii) Information Retrieval-based

techniques to intuitively rank, (iii) Natural Language Processing techniques to semantically enrich

structured data, and (iv) Combinatorial optimization techniques to handle relatedness of multiple

entities.

1.5 Entity Summarization Framework (How?) and Disserta-

tion Focus

We propose a diversity-aware entity summarization framework for individual entities and a collection

of entities. In the individual entity summarization process, entities are processed in isolation to create

1.5. ENTITY SUMMARIZATION FRAMEWORK (HOW?) AND DISSERTATION FOCUS 10

Semantic

Expansion

Semantic

Enrichment
Ranking

Semantic

Relatedness

Conceptual Grouping

Ranking and Summary

Creation

Single Entity Description

FACES Approach

User applications and engagements

Schema

Knowledge

Lexical

Database

Multiple Entity Descriptions

Combinatorial Optimization

&

Multi-entity Summary Creation

REMES Approach

Figure 1.3: Diversity-aware entity summarization framework for individual and multiple entities.

summaries by picking diverse and important features. In contrast, the multiple entity summarization

process considers a collection of entities as a whole to create entity summaries that prefers diversity

within each entity summary and related features between the entity summaries. Figure 1.3 shows

an overview of the two process flows. These two approaches are briefly described below.

1.5.1 Single Entity Summarization

We propose FACeted Entity Summarization (FACES) approach to create single entity summaries

(entities are processed in isolation). First, we apply semantic expansion and enrichment processing

steps to property-value pairs, and then partition them into conceptually similar groups. Finally, a

faceted entity summary is created using the groups. Semantic expansion is the process that adds

additional data semantics, and semantic enrichment process adds missing semantics to the data

to make them usable. For semantic expansion and semantic enrichment, we make use of machine

readable knowledge.

1.5. ENTITY SUMMARIZATION FRAMEWORK (HOW?) AND DISSERTATION FOCUS 11

Machine Readable Knowledge

Knowledge is modeled in various ways that is processable by machines. Ontologies and lexical

databases are two such resources that we use in our framework. An ontology captures general or

domain-specific knowledge and represents them in a machine readable and community agreed form.

Gruber et al. defined an ontology as “an explicit specification of a conceptualization” [Gruber et al.

1993] and later evolved with the term “ontological commitment” to refer to community agreement.

Modeling ontologies and knowledge need special attention and there exist formal languages for this

purpose. Resource Description Framework (RDF) [Manola et al. 2004], RDF-Schema (RDFS) [Brick-

ley and Guha 2004], and Web Ontology Language (OWL) [Dean et al. 2004] are such knowledge

representation languages listed in increasing order of their expressiveness.

Apart from ontologies, Natural Language Processing (NLP) communities have created lexical

databases that capture the semantics of words such as, synonyms, antonyms, hypenyms, and hy-

ponyms. These resources are helpful in enabling machines to understand document content by

analyzing word semantics. For example, machines can identify two words that have the same mean-

ing by determining whether they are synonyms or have similar hypernyms. WordNet [Miller et al.

1990] is a widely used lexical database that captures the semantics of words. We use WordNet to

get abstract terms (hypernyms) for words in our framework.

1.5.1.1 Semantic Expansion

We employ a partitioning algorithm to understand conceptually similar groups in our framework, and

for the algorithm to achieve good results, features need to be semantically expanded for improved

agreement among them. The expansion can be performed in many different ways, and for our

problem space, we need the features in each part (group) of the partition to agree at an abstract

level. For example, entities related to cities, countries, and regions should be grouped together

because they all are spatially related. To achieve this kind of similarity among items within a

particular part in the partition, we follow the following two steps: (1) extract the type information

1.5. ENTITY SUMMARIZATION FRAMEWORK (HOW?) AND DISSERTATION FOCUS 12

of the entities from schema knowledge in the knowledge graph and (2) expand tokens for each feature

using hypernyms extracted from the WordNet lexical database.

Type information provide some level of semantic agreement between features (from entities men-

tioned in the features), but are not sufficient to achieve our objective. Type information are the

ontology classes assigned to entities as their semantic type. For example, Marie Curie can be typed

as a “Scientist” where Scientist is a class (concept) in the ontology (schema knowledge). Expanding

these terms further, by extracting super classes from the ontology and using hypernyms retrieved

from a lexical database like WordNet, we can improve the quality of the partition. In addition to

taking types of the entities (value of the feature), we take tokens of the property of the feature and

expand them using WordNet to get input from the relationship part of the feature. Recall that a

feature is comprised of a property and a value (see Figure 1.1).

1.5.1.2 Semantic Enrichment

The values of entity descriptions can be entities or literals. When they are entities, their semantics

can be represented using type information and machines can process this knowledge and get to

know what ontology class they belong to. This leads to machine understanding of the data. But

for literals, there is no such knowledge, except the primary implementation types assigned to them

like “string”. “Incomplete” semantics lead to more syntactic treatment. Therefore, we propose a

method to compute types for literals in knowledge graphs where possible, to enable richer semantic

processing capabilities. To achieve this goal, we utilize NLP techniques and knowledge available at

the schema level (ontology).

1.5.1.3 Conceptual Grouping

After features are semantically expanded and enriched, this step tries to create groups that go

beyond syntactic similarity. One challenge in this process is that the number of groups that features

belong to an entity cannot be determined a priori. Therefore, unsupervised techniques in finding

1.5. ENTITY SUMMARIZATION FRAMEWORK (HOW?) AND DISSERTATION FOCUS 13

these groups have been explored and hierarchical clustering algorithms work best in these scenarios.

Further, in grouping features, we would like the features in a group to be more semantically similar.

Cobweb [Fisher 1987] is an incremental and hierarchical clustering algorithm that works with

probability distributions. That is, if more similar things are grouped together, other similar items to

come tend to be grouped into the same group. This behavior is explained as “conceptual clustering”

and Gennari et al. [Gennari et al. 1989] argue that this is similar to human judgment in grouping

items. Further, Cobweb provides the additional benefit of being incremental. The hierarchical

clustering approaches generate dendrograms (tree structures) that we can get the partitions from

by pruning at desired levels. Since the Cobweb algorithm works on a probability function, having

a good distribution of attribute-value pairs for each item to be partitioned helps it to have good

quality partitions. In our problem, we make use of the semantic expansion process to compensate

for this. We adapt the Cobweb algorithm to conceptually group features for each entity with the

use of semantic expansion and enrichment.

1.5.1.4 Ranking and Faceted Entity Summary Creation

The conceptual grouping component creates a partition for all the features for a given entity. Each

part in this partition represents semantically different features. Finally, creating faceted (i.e., di-

versified) entity summaries consist of two steps: (1) ranking features and groups and (2) picking

features from different groups to create the entity summary.

Instead of employing just a ranking mechanism, our approach creates a partition for the features

of an entity and then applies a ranking mechanism to select features from the partition. We rank fea-

tures within each group and based on the ranking of the features, we also rank groups. The primary

building block of the ranking process is the ranking measure for each feature. For this purpose, we

combine informativeness and popularity measures inspired by tf-idf measure12. Informativeness is

similar to idf (inverse document frequency) and popularity is similar to tf (term frequency). Specif-

12https://en.wikipedia.org/wiki/Tf-idf, accessed 04/10/2017

1.5. ENTITY SUMMARIZATION FRAMEWORK (HOW?) AND DISSERTATION FOCUS 14

ically, we would like each feature (property and value together) to be informative and the value to

be popular.

Features are ranked within each group based on this tf-idf based score and groups are ranked

accordingly based on scores of the features. Finally, faceted entity summary creation is the process

of picking top ranked features from each group.

1.5.2 Multi-Entity Summarization

The main focus of the FACES approach is to generate “concise” and “comprehensive” entity sum-

maries and it processes one entity at a time (in isolation). While FACES shows superior entity

summary quality compared to the state-of-the-art systems, it cannot process a collection of entities

maximizing relatedness of inter-entity features in entity summaries. An entity summary created

by analyzing the other entities of interest is important to capture commonality among the entities.

This can help the user to get a better understanding of the entire collection of entities. We proposed

RElatedness-based Multi-Entity Summarization (REMES) approach to address this problem. A

brief overview of REMES process is discussed below.

1.5.2.1 Relatedness and Ranking

In REMES, we try to maximize intra-entity diversity and inter-entity relatedness, in addition to

trying to find important features for the summaries. To achieve these objectives, we measure pairwise

feature relatedness and individual importance of the features.

For relatedness measures between feature pairs, we utilize a combination of graph-based re-

latedness measure called RDF2Vec [Ristoski and Paulheim 2016] applied on values and a Jaccard

co-efficient computed on properties after applying the semantic expansion described in the earlier

section. Further, the importance of a feature is measured using the tf-idf ranking score described

earlier.

1.5. ENTITY SUMMARIZATION FRAMEWORK (HOW?) AND DISSERTATION FOCUS 15

1.5.2.2 Optimization and Multi-Entity Summary Creation

Compared to single entity summary creation, multi-entity summary creation is computationally

expensive because the algorithm has to process multiple entities at the same time to pick related

features between entities. We map the Quadratic Knapsack Problem (QKP) [Gallo et al. 1980]

with multiple constraints (one knapsack per entity) to generate these summaries. To compute a

solution for this problem, we utilize a greedy optimization algorithm called the Greedy Randomized

Adaptive Search Procedure (GRASP) [Yang et al. 2013]. More details on this optimization process

are discussed later in the dissertation. Then, the computation of entity summaries for the entity

collection is achieved by satisfying the knapsacks allocated to each entity in the algorithm. The size

of each knapsack is the desired summary length for the entity.

1.5.3 Dissertation Focus

In this dissertation, our primary focus is on how to create concise and comprehensive entity sum-

maries for single and multiple entities. Comprehensiveness is achieved by having diversity in the

features that get selected for the summaries. In the multi-entity summarization approach, in addi-

tion to selecting diverse and important features for each summary, the relatedness among different

summaries is also valued.

Main Contributions

Our main technical contributions with regards to entity summarization are as follows.

1. We present an algorithm to conceptually group features in individual entity descriptions in order

to introduce diversity in selecting features for the summary. Each group in the entity description

represents a unique latent dimension.

2. We enhance the grouping capabilities of features by semantically expanding them using a lexical

database and schema knowledge. This makes the features in each group not only syntactically

1.5. ENTITY SUMMARIZATION FRAMEWORK (HOW?) AND DISSERTATION FOCUS 16

similar but also semantically related.

3. We introduce a method to enrich knowledge graphs by adding type semantics to literals and

demonstrate that such enrichment is useful in practice by offering entity summarization as a use

case.

4. We propose a simple and effective ranking mechanism similar to tf-idf to rank features in entity

descriptions.

5. We propose a diversity-aware entity summarization approach for individual entities that com-

bines semantic expansion and enrichment, grouping, and ranking mechanisms.

6. We measure the relatedness of two features by computing their property similarity using semantic

expansion and value relatedness using graph-based co-appearance measures.

7. We propose a relatedness-based multi-entity summarizataion approach that maximizes the re-

latedness of features between different entity summaries and diversity of features within each

entity summary. To efficiently solve this, we adapt a greedy solution for the Quadratic Multidi-

mensional Knapsack Problem (QMKP).

Other Contributions

In this dissertation, we explore two additional applications related to entities, entity summarization

and knowledge graphs. The first is on how to align equivalent relationships between linked datasets,

which is helpful in integrating and summarizing heterogeneous entities across datasets. The second

is demonstrating the value of using extracted entities and their descriptions (knowledge from text) in

performing a computing task of measuring similarity between the original sources where the entities

are extracted.

• Grouping equivalence relations: We propose a statistics-based method to identify equivalence

relationships between linked datasets. Equivalence membership is a strict grouping criteria that

we explore in this use case.

1.6. DISSERTATION ORGANIZATION 17

• Ranking documents based on similarity: We propose a method to use knowledge (entities and

their descriptions) extracted from documents (in the form of knowledge graphs) to measure

inter-document similarity to rank documents for a given document.

1.6 Dissertation Organization

The rest of the dissertation is organized into chapters.

Chapter 2, presents background on World Wide Web (WWW), knowledge representation and

Semantic Web, and discuss related literature for entity summarization.

Chapter 3, discusses the FACES approach for generating both concise and comprehensive entity

summaries. It introduces the concepts of semantic expansion, conceptual grouping, ranking, and

faceted entity summary creation. Entity descriptions can contain both object and datatype proper-

ties and, in this chapter, we focus on object property-based entity summarization. We present an

evaluation of the system against the state-of-the-art approaches, and discuss the results, focusing

on diversity-aware entity summarization (FACES system).

Chapter 4, introduces our semantic enrichment approach that can assign an ontology class as

the type (referred to as typing) to a literal in an RDF triple. This process is directly related to the

semantic enrichment component in the FACES framework. We device an approach that analyzes

the focus of the entire literal and entities present in picking the correct type for the literal. We show

the usefulness of such an enrichment process by taking up the entity summarization use case.

Chapter 5, presents the REMES approach for computing intra-entity diversity and inter-entity

relatedness-based multi-entity summarization. We present methods for combing graph-based and se-

mantic expansion-based relatedness measures. We adapt the Quadratic Multidimensional Knapsack

Problem to solve the problem and present an evaluation of the approach against the state-of-the-art

standalone entity summarization techniques.

Chapter 6, discusses two application use cases of grouping and ranking mechanisms using struc-

1.6. DISSERTATION ORGANIZATION 18

tured knowledge. We propose an approach to find equivalent relationships between datasets and an

approach to compute (and rank) document similarity utilizing structured knowledge.

Chapter 7, summarizes the key insights of the contributions presented in the dissertation and

discusses future directions.

2

Background and Related Work

2.1 WWW, Semantic Web, and Knowledge Representation

The World Wide Web (WWW or Web for short) was initiated more than twenty five years ago in

1989 by Sir Tim Berners-Lee with his innovative idea to connect remote computers over the Internet

to access documents scattered over different machines [Berners-Lee 1989]. Over the years, the Web

has made tremendous progress in serving that need and currently has around 50 billion documents

(Web pages) indexed by popular Web search engines [Web-Statistics 2017]. Tim Berners-Lee’s

original idea to combine hypertext with the Internet used three component technologies:

• Uniform Document Identifier (UDI) to uniquely identify a document which later became as

Uniform Resource Identifier (URI).

– Subsequent extension to this is called Internationalized Resource Identifier (IRI) which can

include unicode characters whereas URI can only contain ASCII characters1.

• Web publishing markup language called Hypertext Markup Language (HTML).

• Hypertext Transfer Protocol (HTTP) for communication between machines.

1https://www.w3.org/2004/11/uri-iri-pressrelease, Accessed 04/10/2017

19

2.1. WWW, SEMANTIC WEB, AND KNOWLEDGE REPRESENTATION 20

While WWW has been a real success, it lacked the ability to represent semantics of the content

explicitly to enable the machines to understand the content.

The Semantic Web and Knowledge Representation

The Semantic Web [Berners-Lee et al. 1999; Sheth 2000; Berners-Lee et al. 2001; Antoniou and

Van Harmelen 2004; Hitzler et al. 2009; Sheth and Thirunarayan 2012] is an extension of the WWW

to allow more meaningful sharing and exchange of data using knowledge representation languages

like RDF. The World Wide Web Consortium (W3C), the organization that defines the standards for

the Web, envisions Semantic Web [Semantic-Web 2017] as “the Web of linked data and Semantic

Web technologies as enabling people to create data stores on the Web, build vocabularies, and write

rules for handling data.” In 2001, Berners-Lee et al. [Berners-Lee et al. 2001] expressed the idea

of evolving Web into Semantic Web by highlighting the term “ontology” 2. Even before the term

“Semantic Web” became popular with Tim Berners-Lee’s 2001 publication, there are early efforts

that made use of ontology-based Web data integration, search, and querying in the mid-to-late 1990s

such as Observer [Mena et al. 1996], InfoHarness [Shah and Sheth 1999], VideoAnywhere [Sheth et al.

1999], and MediaAnywhere search [Sheth et al. 2001]. Before the wide-scale use of entity summaries

in regular Web search engines as in Google and Bing (showed in Figure 1.2), the “Rich Media

Reference” system [Sheth et al. 2002] in early 2000s demonstrated the idea of providing a snapshot

(i.e., summary) of the entity being searched. This system used an underlying ontology (also called

WorldModelTM) and extracted data from Web documents (termed as creating a knowledgebase at

that time) and these two components collectively formed a knowledge graph. Figure 2.1 shows an

output of the system at that time.

Capturing and representing knowledge in terms of ontologies, taxonomies, vocabularies, and

datasets can be achieved using formal knowledge representation languages such as first order logic,

logic programming languages, and more tractable fragments such as RDF [Manola et al. 2004],

2Note that this is not necessarily the first article to talk about Ontology-based data processing.

2.1. WWW, SEMANTIC WEB, AND KNOWLEDGE REPRESENTATION 21

Rich Media Reference Page

Baltimore 31, Pit 24

http://www.nfl.com

Quandry Ismail and Tony Banks hook up for their third

long touchdown, this time on a 76-yarder to extend the

Raven’s lead to 31-24 in the third quarter.
Professional

Ravens, Steelers

Bal 31, Pit 24

Quandry Ismail, Tony Banks

Touchdown

NFL.com

2/02/2000

League:

Teams:

Score:

Players:

Event:

Produced by:

Posted date:

Summary generated from

the extracted knowledge
Relevant information

Figure 2.1: Rich Media Reference system in early 2000s for different domains.

dbr:Marie_Curie dbo:Person
rdf:type

RDF/Turtle syntax of the triple

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .

@prefix dbr: <http://dbpedia.org/resource/> .

@prefix dbo: <http://dbpedia.org/ontology/> .

dbr:Marie_Curie rdf:type dbo:Person .

Subject Predicate Object

Figure 2.2: Example triple and its RDF/Turtle representation.

RDFS [Brickley and Guha 2004], and OWL [Dean et al. 2004]. The formal knowledge representation

languages such as RDF and RDFS represent sentences in the form of “triples”. A triple consists of a

“Subject”, a “Predicate”, and an “Object”. Figure 2.2 shows an example triple and its RDF/Turtle

representation. Turtle is the simplest syntax for RDF (and easier to understand) and RDF/XML is

the XML embodiment (that is more suitable for machine processing).

Linked Data

The focus of Semantic Web now is to create a Web of Linked Data where anybody can publish data

on the Web linked to other data sources [Semantic-Web 2017]. The inter-linking of datasets helps

2.1. WWW, SEMANTIC WEB, AND KNOWLEDGE REPRESENTATION 22

discover new knowledge/information and complement datasets. Tim Berners-Lee introduced the

concept of Linked Data in 2006 to realize this vision [Berners-Lee 2006] highlighting a set of best

practice rules. The rules are as follows.

1. Use URIs as names for things.

2. Use HTTP URIs so that people can look up those names.

3. When someone looks up a URI, provide useful information, using the standards (RDF, SPARQL).

4. Include links to other URIs. so that they can discover more things.

Following these best practice rules, people started publishing datasets on the Web linking to

other datasets mainly using rdf:sameAs at the data level (i.e., connecting entities). This resulted

in the LOD cloud shown in Figure 2.3. The LOD cloud consists of interconnected domain specific

and domain independent as well as encyclopedic datasets creating a huge knowledge repository,

which is impossible to create by a single governing authority. These huge number of interconnected

datasets on the Web are used to query [Joshi et al. 2012; Freitas et al. 2012; Freitas and Curry

2014; Freitas et al. 2015] and align [Gunaratna et al. 2014] to support user applications. Data

compression techniques have also been explored to handle volume of the data [Joshi et al. 2013]

and graph summarization approaches have been explored to provide a quick snapshot of the entire

graph [Cheng et al. 2016].

The datasets on LOD are open to changes and continue to grow in size [Auer et al. 2013]. The

number of entities and also features per entity have increased over time and become lengthy for

human processing (and also for machine in some tasks). For example, DBpedia 2016-04 English

version has about 6 million entities described in 1.3 billion triples. On average, it lists around 200

features per entity and there arises the necessity to summarize these features depending on the

application. For example, a selected subset of the features of an entity can be shown to a user in

answering a Web search query (see Figure 1.2).

2.1. WWW, SEMANTIC WEB, AND KNOWLEDGE REPRESENTATION 23

Figure 2.3: LOD cloud diagram in 2017 (as of April). See http://lod-cloud.net/ for details.

2.2. ENTITY SUMMARIZATION 24

2.2 Entity Summarization

Entity summarization is the task of selecting/formulating a subset of features from an entity descrip-

tion to describe the entity. Summarization task can be categorized as extractive or non-extractive.

Extractive summaries choose a subset of the features for the summary whereas non-extractive sum-

maries include reformulation of the extracted facts. In this dissertation, we focus on extractive

methods for entity summarization. A different categorization to this is summarizing entity descrip-

tions for a specific task or for general consumption. For example, entity summaries can help perform

a specific task like Entity Linking (EL) and Entity Resolution (ER). Entity Linking [Hachey et al.

2013] is the task of assigning an entity taken from a knowledge graph to an entity mention in the

text whereas entity resolution is to determine whether two or more entity descriptions refer to the

same real world entity. [Cheng et al. 2015b] and [Cheng et al. 2015a] handles the tasks of entity

linking and entity resolution using entity summaries, respectively. We present methods in creating

entity summaries for general purpose consumption as we encounter entity summaries in search (e.g.,

Google search and Bing search). We further breakdown our methods in two different granularity

levels: (i) single entity summary generation and (ii) multiple entity summary generation. Chap-

ter 3 and Chapter 4 focus on single entity summarization and Chapter 5 presents an approach for

multi-entity summarization.

2.2.1 Single Entity Summarization

In this section, we focus on systems and approaches that generate single entity summaries.

Entity Summarization Methods and Ranking Algorithms

[Cheng et al. 2011] introduced and defined the problem of entity summarization in RDF graphs and

showed its usefulness in quick identification of an entity. Their system, called RELIN, generalizes

the PageRank algorithm to select both related and informative features. The problem with RELIN’s

2.2. ENTITY SUMMARIZATION 25

random surfer, which selects both related and informative features, is that it tends to emphasize

central themes and similar and correlated features of an entity because of the centrality based

ranking mechanism of the PageRank algorithm. SUMMARUM [Thalhammer and Rettinger 2014] is

an entity summarization system for DBpedia that is also based on PageRank and utilizes the global

popularity of resources gleaned with the help of information from the corresponding Wikipedia pages.

LinkSum [Thalhammer et al. 2016] is an approach that makes use of PageRank for ranking and also

link structure of entities in Wikipedia to select facts for entity summaries. [Thalhammer et al. 2012]

proposed an approach that utilizes usage data for creating entity summaries and evaluated it in the

movie domain using user ratings for movies. Such an approach is hard to generalize because usage

data may not be readily available for entities. [Yan et al. 2016] pursued an effort to incorporate

context in generating entity summaries by mining query logs. In the recent past, workshops (SumPre

at ESWC) 3 and challenges [Gunaratna et al. 2016] have been organized to support the efforts in

the area.

Ranking in the Semantic Web is closely related to entity summarization as the latter task can be

perceived as selecting the top k features from an RDF graph. Various ranking algorithms exist in

the literature for RDF graphs including TripleRank [Franz et al. 2009] that ranks triples, SemRank

[Anyanwu et al. 2005] that ranks associations or paths, [Ding et al. 2005] rank documents, and

TRank [Tonon et al. 2013] that ranks concepts. These approaches incorporate ranking algorithms

for different reasons. For example, TripleRank [Franz et al. 2009] groups triples using tensors and

link analysis. TripleRank’s goal is to rank and identify authoritative sources for a given entity.

Proposed Approach

We propose FACES [Gunaratna et al. 2015], which conceptually groups features of an entity (to

add diversity in the summary) and then ranks features based on tf-idf based ranking scheme to

pick features for the entity summary. The facet or latent grouping concept that we introduce in

3http://ceur-ws.org/Vol-1556/ and http://ceur-ws.org/Vol-1605/

2.2. ENTITY SUMMARIZATION 26

FACES is different from facets in TripleRank as TripleRank’s grouping is based on authority whereas

FACES’s is based on semantic overlap of the expanded terms of the features. Also, [Cheng et al.

2011] pointed out that it is hard to align the TripleRank approach to the entity summarization

problem but its authoritative ranking is similar to RELIN where centrality dominates. Grouping

in RDF datasets has been investigated in upper level ontology creation [Zhao and Ichise 2012] and

property alignment [Gunaratna et al. 2013], but these groupings are different from what we explore

in FACES. We find conceptually similar groups (explained later) that are not just related (i.e., object

value overlap of RDF triples) [Zhao and Ichise 2012] or equivalent [Gunaratna et al. 2013] groups.

Instead, diversity has been shown to be useful in creating graphical entity summarization [Sydow

et al. 2013], which is different from entity summarization as it produces a graph (includes neighboring

entities) rather than a set of features. They pick ‘lexicographically different’ property names to

achieve diversity in the summary using syntactic measures (e.g., birthPlace and deathPlace are

different in their context) whereas FACES groups them together (i.e., going beyond string similarity).

Further, FACES differs from the existing entity summarization and ranking systems in that it creates

both concise and comprehensive summaries. We hypothesize that diversity provides a more complete

picture of the entity (i.e., comprehensiveness) when subjected to length constraint (i.e., conciseness).

Improving Type Semantics and Entity Summarization

Type assignment to text fragments is known as Named Entity Recognition (NER) [Nadeau and

Sekine 2007]. NER consists of two subtasks: (i) segmenting and (ii) classifying segmented text

blocks into pre-defined categories (types). NER produces types for segments of the input text

whereas EL identifies entities from which types can be inferred. Finding missing types for entities

[Paulheim and Bizer 2013; Sleeman and Finin 2013] is important for the reliability of datasets and

reasoning. [Paulheim and Bizer 2013] infer types for entities in DBpedia and [Sleeman and Finin

2013] predict types of entities for efficient co-reference resolution. TRank [Tonon et al. 2013] ranks

entity types based on the context in which they appear (disambiguation). [Fang et al. 2010] use type

2.2. ENTITY SUMMARIZATION 27

information for search, and [Tylenda et al. 2011] generate summaries by analyzing type graphs. The

diversity-aware FACES approach proposed for single entity summarization requires type semantics

for the values of the features to conceptually group them. Hence, it is applicable only to object

property-based features.

Proposed Approach

We propose FACES-E [Gunaratna et al. 2016], which includes a typing module to compute semantic

types for literals in datatype-based property values. The type computation tries to carefully select

the proper type for the literal based on special processing that identifies the focus of the term.

Then FACES-E utilizes both object and datatype property-based features to create comprehensive

and concise entity summaries. Further, FACES-E extends FACES approach by ranking facets in

selecting the entity summaries. NER and EL, however, differ from our problem in that they do not

try to suggest a type based on the focus of the text but rather try to determine the types of all the

entities present, causing ambiguity from the perspective of our problem (e.g., as illustrated using

our evaluation with DBpedia Spotlight [Mendes et al. 2011]). Also, the approaches mentioned above

work on entities and/or object properties or infer types for entities, whereas we focus on typing

datatype properties where no semantic types are readily available.

2.2.2 Multi-Entity Summarization

Entity summaries have been shown to be effective in performing specific tasks (supporting human

effort) like Entity Linking [Cheng et al. 2015b] and Entity Resolution [Cheng et al. 2015a; Xu et al.

2014]. Unlike previously mentioned entity summarization approaches above, these consider more

than one entity simultaneously in creating summaries. Multi-entity summarization is a fairly new

topic in this area and hence it is at the early stage of making progress. These approaches generate

multi-entity summaries for specific tasks and we propose an approach to generate general purpose

multi-entity summarization approach based on relatedness.

2.2. ENTITY SUMMARIZATION 28

Proposed Approach

We propose REMES [Gunaratna et al. 2017] to generate muti-entity summaries by capturing intra-

entity diversity and importance like some of the single entity summarization methods (e.g., FACES

and FACES-E) and inter-entity relatedness of features. We enforce selecting diverse features for

each entity and related features among entities.

3

Diversity-Aware Single Entity

Summarization

The entity descriptions in the datasets published online as LOD evolve over time [Auer et al. 2013]

and grow in size. For example, DBpedia [Lehmann et al. 2015] is a very large and central dataset in

the LOD cloud extracted from Wikipedia. The DBpedia English version 3.9 has 4 million entities

described in 470 million RDF triples (facts) and current English version 2016-04 has 6 million entities

described in 1.3 billion RDF triples, averaging over 100 and 200 triples per entity, respectively. This

amount of information is too much for the quick assimilation of essential information about an entity

for a user. Therefore, selecting a small subset of the original triples associated with an entity as a

summary is necessary for quick/convenient identification/access of entity-related information. This

problem has been called Entity Summarization [Cheng et al. 2011] in the literature.

Entity summarization is a challenging task, like the well-established field of document summa-

rization. Document summarization [Nenkova and McKeown 2012; Mani 2001] has been a topic of

interest for data mining and information retrieval communities. Though entity summarization and

document summarization are conceptually similar tasks, they differ in the nature of features, the

techniques to use, and the structure of the content. Documents are unstructured with significant

29

30

textual content, so word frequency can be used to glean the essence and used in summarizing their

content. For example, frequent words are good candidates for inclusion in a summary of a document.

In contrast, entities are structured and do not have frequent word appearances (no duplicates most

of the time). Therefore, techniques adopted for document summarization do not always carry over

to entity summarization.

Many entity summarization approaches focus more or solely on centrality measures (including

popularity) and ranking measures to generate entity summaries. For example, [Cheng et al. 2011;

Thalhammer and Rettinger 2014] use a variation of PageRank algorithm to rank features and then

pick the top k features for the summary. But we hypothesize that centrality measures and ranking

mechanisms alone are not sufficient to improve the quality of entity summaries. Rather, the added

use of orthogonal semantic groups of features to diversify the summaries can be effective. To investi-

gate our hypothesis, we propose the FACeted Entity Summarization (FACES) approach [Gunaratna

et al. 2015]. Our contributions in FACES are two fold:

1. We identify conceptually similar groups of features of an RDF entity by adapting and modifying

an incremental hierarchical conceptual clustering algorithm called Cobweb [Fisher 1987] and

introduce an algorithm to rank features within a group.

2. We combine three dimensions: diversity, popularity, and uniqueness, to create human friendly

entity summaries in a time efficient manner.

Moreover, FACES has other distinct characteristics compared to the existing state-of-the-art

entity summarization tools. They are as follows.

• It selects features considering diversity which eliminates redundancy (by filtering similar fea-

tures).

• It is dynamic as it is less sensitive to the order of input features and is robust with regards to

evolving features (thus applicable in streaming contexts).

3.1. PRELIMINARIES 31

• It is relatively fast due to its hierarchical and incremental processing structure. FACES groups

conceptually similar features in order to select the highest ranked feature (based on uniqueness

and popularity) from each group to form a faceted (diversified) entity summary.

3.1 Preliminaries

Entity summarization has been a topic of interest in the Semantic Web community in the recent

years and we present notions related to entity summarization adapted from [Cheng et al. 2011]

below.

A data graph is a graph based data model, which describes entities using properties and their

values. It consists of entities (E), literals (L), and properties (P). An entity e (e ∈ E) is described

in a data graph using property-value pairs (a, v) ∈ P x (E ∪ L).

Definition 1 (data graph) A data graph is a digraph G = 〈V, A, LblV , LblA〉, where (i) V is a

finite set of nodes, (ii) A is a finite set of directed edges where each a ∈ A has a source node Src(a)

∈ V, and a target node Tgt(a) ∈ V, (iii) node labels LblV : V 7→ E ∪ L and (iv) edge labels LblA

: A 7→ P. LblV and LblA are labeling functions that map nodes to entities or literals and edges to

properties, respectively.

Entities are described using property-value pairs that we call as features. The feature and feature

set are defined as follows.

Definition 2 (feature) A feature f is a property-value pair where Prop(f) ∈ P and Val(f) ∈ E∪L

denote the property and the value of the feature f , respectively. An entity e has a feature f in a data

graph G = 〈V, A, LblV , LblA〉 if there exists a ∈ A such that LblA(a) = Prop(f), LblV (Src(a)) = e

and LblV (Tgt(a)) = Val(f).

Definition 3 (feature set) Given a data graph G, the feature set of an entity e, denoted by FS(e),

is the set of all features of e that can be found in G.

3.2. FACETED ENTITY SUMMARIZATION 32

An entity summary is a subset of all the features associated with the entity.

Definition 4 (entity summary) Given an entity e and a positive integer k < |FS(e)|, summary

of entity e is Summ(e, k) ⊂ FS(e) such that |Summ(e, k)| = k.

3.2 Faceted Entity Summarization

The entity summarization is application and task dependent and the general definition specifies the

selection of a subset of features of an entity. In this work, we want to add diversity into the selection

process to have improved coverage for the entity summary whereas in the general case, the entity

summary can have similar features to each other simply because they are ranked higher by the

ranking algorithm. Our objective in this regard can be informally outlined as follows:

An entity is usually described using conceptually diverse set of features to have wider coverage of

information related to the entity. We want to select a ‘representative’ subset of this set to uniquely

identify the entity.

Specifically, we identify semantically similar/dissimilar features and use them in ranking and

selecting features for the summary. For this purpose, we define the facet of a feature set as follows.

Definition 5 (facet). Given an entity e, a set of facets F (e) of e is a partition of the feature

set FS(e). That is, F (e) = {A1, A2, ...An} such that F (e) satisfies the following criteria: (i) Non-

empty: ∅ /∈ F (e). (ii) Collectively exhaustive:
⋃

A∈F (e)

A = FS(e). (iii) Mutually (pairwise) disjoint:

if Ai,Aj ∈ F (e) and Ai 6= Aj then Ai ∩ Aj = ∅. Each Ai is called a facet of e.

According to the Definition 5, a facet can contain features that are similar, dissimilar, or randomly

picked. In our faceted entity summarization approach, we want to identify “conceptually” similar

features so as to be able to diversify the summary. Our hypothesis is that the feature set of an entity

can be divided into conceptually orthogonal groups, approximated by the facets, using a partitioning

(clustering) algorithm. Furthermore, a facet can be viewed as a hidden variable. See Figure 3.1.

{F1, F2, F3} is a partition of the feature set FS. Note that the features within each facet are similar

3.2. FACETED ENTITY SUMMARIZATION 33

Entity - Marie Curie

Feature Set Facets Features Property Value

FS

F1 f1 spouse Pierre_Curie

F2

f2 birthPlace Warsaw

f3 deathPlace Passy,_Haute-Savoie

F3

f4 almaMater ESPCI_ParisTech

f5 workInstitutions University_of_Paris

f6 knownFor Radioactivity

f7 field Chemistry

Marie_Curie

Pierre_Curie

Warsaw

Passy,_Haute-Savoie

ESPCI_ParisTech

University_of_Paris

Radioactivity

Chemistry

Summary 1 (normal) : {f2, f3, f4}

Summary 2 (faceted) : {f1, f2, f6}

Figure 3.1: Facets of entity - Marie Curie. Values for conceptually similar features are in the same

color pattern.

than those between facets. That is, the features that are expressed through KnownFor and Field

properties are conceptually similar because they both represent the entity’s professional life. Also

note that they are syntactically dissimilar. But features having birthPlace and knownFor properties

are conceptually dissimilar (and also syntactically dissimilar) as they represent completely different

information to each other. Next, we define Faceted Entity Summary for an entity based on facets

that we described here.

Definition 6 (faceted entity summary). Given an entity e and a positive integer k < |FS(e)|,

faceted entity summary of e of size k, FSumm(e, k), is a collection of features such that FSumm(e, k)

⊂ FS(e), |FSumm(e, k)| = k. Further, either (i) k > |F(e)| and ∀X ∈ F(e), X∩ FSumm(e, k) 6= ∅

or (ii) k ≤ |F(e)| and ∀X ∈ F(e), |X∩ FSumm(e, k) | ≤ 1 holds, where F (e) is a set of facets of

FS(e).

Informally, if the number of facets is n and the size of the summary is k, at least one feature

from each facet is included in the summary when k > n. If k ≤ n, then at most one feature from

each facet is included in the summary. For example, a faceted summary of length 3 for the entity

Marie Curie can be {f1, f2, f6} as shown in Figure 3.1. Next, we discuss the partition algorithm

that is used to create facets.

3.2. FACETED ENTITY SUMMARIZATION 34

3.2.1 Partitioning Algorithm - Cobweb

Facets are obtained from running a suitable partitioning algorithm for our problem. There are many

partitioning algorithms available in the literature, mainly as supervised and unsupervised. Since,

we do not know how many partitions are there for a feature set, we have to use an unsupervised

partitioning algorithm, which is also known as clustering. We adapted a clustering algorithm called

Cobweb [Fisher 1987].

3.2.1.1 Cobweb

Cobweb is an incremental, hierarchical, and conceptual clustering algorithm.

Incremental: The algorithm is incremental in the sense that it can start, stop and then resume

from where it stopped last time. That is, Cobweb does not require all the items present at the start

of execution. This is enabled by the four operations that Cobweb has, namely: insert, create, merge,

and split. These operations are explained later.

Hierarchical: The algorithm is hierarchical as it organizes facts in a dendrogram (tree-like

structure) where clusters are determined by the level the tree is cut.

Conceptual: The algorithm belongs to the class of conceptual clustering, which is a machine

learning task defined by [Michalski 1980]. It basically accepts a set of object descriptions (ob-

servations, facts) and produces a classification over the observations. Thus conceptual clustering

paradigm is learning by observations as opposed to learning from examples.

Cobweb algorithm has two major components. First is its Category Utility function that decides

how to navigate the hierarchy when inserting a new item. Second is the four operators: insert,

create, merge, and split.

3.2. FACETED ENTITY SUMMARIZATION 35

Category Utility

An item has attribute-value pairs. Category utility function guides search within Cobweb by

maximizing similarity among items in the same class (intra-class) and dissimilarity among items

between classes (inter-class). Intra-class similarity is measured by the conditional probability of

P (Ai = Vij |Ck), where Ai = Vij is an attribute-value pair and Ck is a class. When this probability

is higher, many items with similar values will be in the same class (predictable). That is, the value is

predictable with the class. On the other hand, inter-class similarity is measured by the probability

of P (Ck|Ai = Vij). When this probability is higher, few items in contrasting classes share the same

value (predictive). That is, the value is more predictive of the class. The objective of the algorithm

is to maximize both predictability and predictiveness. Probabilities of individual values P (Ai = Vij)

are not directly related to predictability and predictiveness, but all three can be combined as follows

to give a measure of partition quality, for all classes (k), attributes (i), and values (j). Also note that

it is important to increase predictability and predictiveness than individual values (this becomes low

for infrequent values).

n∑
k=1

∑
i

∑
j

P (Ai = Vij)P (Ck|Ai = Vij)P (Ai = Vij |Ck)

From the Bayes rule, we get, P (Ai = Vij)P (Ck|Ai = Vij) = P (Ck)P (Ai = Vij |Ck). By substi-

tuting this in the above, we get the following.

n∑
k=1

P (Ck)
∑
i

∑
j

P (Ai = Vij |Ck)2

Fisher explains that
∑
i

∑
j

P (Ai = Vij |Ck)2 is the expected number of attribute values that can

be correctly guessed for class Ck [Fisher 1987]. Finally, the Category Utility (CU) is defined as

the increase in the number of attribute values that can be guessed (
∑
i

∑
j

P (Ai = Vij |Ck)2) given a

partition C1..., Cn over the number of correct guesses with no such knowledge (
∑
i

∑
j

P (Ai = Vij)
2).

Then the Category Utility CU for the partition C1, C2, ..., Cn is as in Equation 3.1.

3.2. FACETED ENTITY SUMMARIZATION 36

CU =

n∑
k=1

P (Ck)[
∑
i

∑
j

P (Ai = Vij |Ck)2 −
∑
i

∑
j

P (Ai = Vij)
2)]

n
(3.1)

The denominator n is the number of classes in the partition. The next important part of the

Cobweb algorithm is its four operators.

Insert Operator

Cobweb places an item in each class and checks how successfully it fits that class. The partition

resulting from including the item in a given node (which represents a class) is evaluated using the

CU function given in Equation 3.1. The node that contributes to the best partition is identified as

the best host for the item.

Create Operator

In addition to placing items in existing nodes in the hierarchy, Cobweb can create new nodes to

represent new classes in the hierarchy. The quality of the partition is checked using CU for placing

the item in an existing node or a newly created node. This operator allows Cobweb to automatically

increase the number of classes.

Merge and Split Operators

Merge and split operator are important compared to insert and create operators because these two

operators help the algorithm to be insensitive to the order of the initial input. This effectively makes

it incremental, which is useful in dynamic and stream processing environments where the initial input

cannot be finalized apriori. The merge operator takes two nodes at level n and combines them to

have a partition of n - 1 nodes hoping for a better quality partition than before merging. The

operation creates a new node and adds up attribute-value counts of the two nodes being merged and

the two nodes become children of the new node. This is illustrated in Figure 3.2. Merging could be

attempted on all nodes in the hierarchy but it is only performed on the best two hosts (determined

3.2. FACETED ENTITY SUMMARIZATION 37

P

A B

A B

P

new node

Merge

Figure 3.2: Merging in Cobweb.

through category utility) to minimize computational cost.

The split operator deletes a node and promotes the deleted node’s children up in the hierarchy. A

partition of n nodes results in a partition of n + m - 1 nodes, where the deleted node had m children

(at the current level in the hierarchy). This is illustrated in Figure 3.3. Splitting is performed only

on the node that has the highest CU score. Merging and splitting are two inverses of each other

and they allow Cobweb to have flexibility in creating the best possible partition from many possible

ones. In other words, merging can be used to undo a previous splitting and vise-versa. Merging is

performed to reduce highly similar nodes in the hierarchy and splitting is performed when a node is

too compressed or general than it should be.

Table 3.2.1.1 outlines the four operators that we described above (in pseudo code format). Then

Algorithm 1 presents the Cobweb algorithm using these four operators. Table 3.2.1.1 and Algorithm 1

are reproduced from [Gennari et al. 1989] to provide the process flow of Cobweb to better understand

how it works. First, Cobweb method is called and if it for the first time, it creates the root node

and stops. Then for each new item, it calls Cobweb starting from the root node, inserting content

of the item into the current processing node. Then, category utility score is computed for each child

of the node simulating inserting item into each child node. Only the nodes with the highest and the

3.2. FACETED ENTITY SUMMARIZATION 38

P

A B

A B

P

node to delete

Split

Figure 3.3: Splitting in Cobweb.

second highest category utility scores are selected to check which of the four operations to choose in

going down in the hierarchy. The algorithm also uses a cut-off threshold to stop processing further

down the hierarchy if the category utility value is less than the cut-off threshold.

3.2.2 Faceted Entity Summary Approach

The faceted entity summary creation consists of three major steps. First, the feature set is parti-

tioned into facets. Second, the features are ranked using some ranking measures and finally, a subset

of the feature set is selected from facets to create the faceted entity summary.

3.2.2.1 Partitioning the Feature Set - Creating Facets

We adapt Cobweb algorithm to cluster a feature set into facets. The insights of the general algorithm

are discussed in Section 3.2.1. There are several challenges associated with features that we describe

in our problem compared to general setting of the Cobweb algorithm. First, Cobweb is designed to

work with attribute-value pairs. Higher the number of attribute-value pairs, the algorithm can better

discriminate them in creating disjoint clusters (in terms of similarity). In our feature space, each

feature f has only two attributes: property and value. These two attributes have values Prop(f) and

3.2. FACETED ENTITY SUMMARIZATION 39

Variables: N , O, P , and R are nodes in the hierarchy.

I is an unclassified instance, A is a nominal attribute, V is a value of an attribute.

Insert(N , I)

Update the probability of category N

for each attribute A in instance I do

for each value V of A do

Update the probability of V given category N

end for

end for

Create(N , I)

Create a new child M of node N

Initialize M ’s probabilities to those for N

Create a new child O of node N

Initialize O’s probabilities using I’s values

Merge(P , R, N)

Make O a new child of N

Set O’s probabilities to be P and R’s average

Remove P and R as children of node N

Add P and R as children of node O

Return O

Split(P , N)

Remove the child P of node N

Promote the children of P to be children of N

Table 3.1: Cobweb operations

3.2. FACETED ENTITY SUMMARIZATION 40

Algorithm 1 Cobweb algorithm

1: Input: The current node N of the concept hierarchy. An unclassified (attribute-vallue) instance I.

2: Results: A concept hierarchy that classifies the instance. Top-level call: Cobweb(Top-node, I).

3: Variables: C, P , Q, and R are nodes in the hierarchy. U , V , W , and X are clustering (partition) scores.

4: Cobweb(N , I)

5: if N is a terminal node then

6: Create(N , I)

7: Insert (N , I)

8: else

9: Insert(N , I)

10: for each child C of node N do

11: Compute the score for placing I in C

12: end for

13: Let P be the node with the highest score W

14: Let R be the node with the second highest score

15: Let X be the score for placing I in a new node Q

16: Let Y be the score for merging P and R into one node

17: Let Z be the score for splitting P into its children

18: if W is the best score then

19: Cobweb(P , I) {place I in node P}

20: else if X is the best score then

21: initialize Q’s probabilities using I’s values {place I by itself in the new category Q}

22: else if Y is the best score then

23: let O be Merge(P , R, N)

24: Cobweb(O, I)

25: else if Z is the best score then

26: Split(P , N)

27: Cobweb(N , I)

28: end if

29: end if

3.2. FACETED ENTITY SUMMARIZATION 41

V al(f), respectively. Since two attribute-value pairs are too low for the algorithm to meaningfully

cluster conceptually similar features, we expand the two attributes and create a word set (WS) to

expose their semantics to work with the algorithm. Our expansion process captures the abstract

(i.e., higher level) meaning of the words being expanded. Then each word in the word set (WS)

becomes an attribute and its value is either 0 or 1, meaning it is either present or absent.

Each feature f (property-value pair) is expanded using the techniques described as follows. We

expand property (Prop(f)) and value (V al(f)) of the feature using WordNet 1 and typing informa-

tion of the values, respectively. WordNet is a lexical database available online and typing information

is available for object URIs representing values in the knowledge graph. Recall that entity is de-

scribed using property-value pairs, and in this approach, we consider only object properties where

property values are URIs. In this case, both properties and values are represented using URIs in the

knowledge graph. We take labels of the URIs for processing, and if labels are not available, the local

names (last part) of the URIs are utilized. For property expansion, first, we tokenize and remove

stop words. Then we retrieve the higher level abstract terms for the tokens. The higher level abstract

terms are determined by the hypernyms retrieved from the WordNet. For the value expansion, we

first retrieve typing information (ontology classes assigned) and then, we tokenize them, remove

stop words, and get higher level abstract terms as before using WordNet. Tokenization includes

processing camel case, spaces, punctuation, underscores, etc. and we consider only nouns to be valid

tokens. The expanded terms include all the tokens resulting from the tokenization step, the original

term, and the added expanded terms of the tokens. Finally, we union all the expanded terms of the

property and value to get the word set WS(f) of feature f . Figure 3.4 shows examples of word set.

Our term expansion process enables the algorithm to have a rich set of words capturing the

semantics for reliable semantic clustering. But note that an attribute has only boolean values unlike

original Cobweb algorithm and hence, the category utility function is refined as follows. Let Cp be

a node in the hierarchy with a set of features that has child clusters (partition) C1, C2, .., Cn. Then

1https://wordnet.princeton.edu/, accessed 04/10/2017

3.2. FACETED ENTITY SUMMARIZATION 42

Feature (f) Property expansion Value expansion Word set (WS)

region:Illinois {region, location,

domain}

{place, PopulatedPlace,

populated, place, point, area,

locality}

{region, location, domain,

PopulatedPlace, populated,

place, point, area, locality}

birthPlace:Honolulu {birthPlace, birth,

place, beginning,

point, area, locality}

{place, PopulatedPlace,

populated, point, area,

locality}

{birthPlace, birth, place,

beginning, point, area,

locality,PopulatedPlace,

populated, point, area, locality}

vicePresident:Joe_Biden {vicePresident, vice,

president, corporate

executive, head of

state}

{person, OfficeHolder,

office, holder, organism,

flesh, human body,

occupation, job, staff,

possessor, owner}

{vicePresident, vice, president,

corporate executive, head of

state, person, OfficeHolder,

office, holder, organism, flesh,

human body, occupation, job,

staff, possessor, owner}

predecessor:George_W._

Bush

{predecessor,

forerunner, precursor}

{person, officeholder, office,

holder, organism, flesh,

human body, occupation, job,

staff, possessor, owner}

{predecessor, forerunner,

precursor, person, officeholder,

office, holder, organism, flesh,

human body, occupation, job,

staff, possessor, owner}

Figure 3.4: Feature expansion using WordNet and type information.

CU of partition {C1, C2, .., Cn} of Cp can be computed as in Equation 3.2. P (Cx) is the probability

of a random feature belonging to child cluster Cx and (Ai, Vi) is the ith attribute-value pair of the

new feature being clustered.

CU(Cp) =

n∑
x=1

P (Cx)
2∑

i=1

[P (Ai, Vi|Cx)2 − P (Ai, Vi|Cp)2]

n
(3.2)

Since our attributes are simply boolean valued (values are either 0 or 1 signifying presence or

absence for a word), we take the probability of word appearances instead of attribute-value pair

notation. The final category utility function for our process is as shown in Equation 3.3. Wi is a

word appearing in WS(f). Equation 3.3 is the function that we use to compute category utility

score for each node as we go down in the hierarchy according to the Algorithm 1 and decide on what

operation to perform out of create, insert, merge, and split. The operation that receives the highest

score is performed if it satisfies the cut-off threshold. If not, we stop adjusting the hierarchy at the

node where the cut-off threshold is not satisfied.

3.2. FACETED ENTITY SUMMARIZATION 43

CU(Cp) =

n∑
x=1

P (Cx)
∑
i

[P (Wi|Cx)2 − P (Wi|Cp)2]

n
(3.3)

Next, we discuss how to rank a feature for selecting features to form the faceted entity summary

from each facet.

3.2.2.2 Ranking Features

Our approach ranks features in facets and hence it does not suffer from ranking similar features to

be higher globally. In contrast, PageRank-based algorithms rank all the features together, biasing

similar features taking top spots. This adversely affects the ability to have diverse features (hence less

comprehensive) in the summary as the summary can have only limited number of features (because

conciseness). Our introduction of facets and then picking features ranked in each facet eliminates

this limitation, helping the faceted entity summaries to be both concise and comprehensive at the

same time.

We employ a special ranking algorithm influenced by the tf-idf technique to get the top ranked

features from each facet to form the faceted entity summary. For a feature f and the value v of f , the

ranking takes into consideration the informativeness/uniqueness (reflected using idf) of f (Inf(f)),

and popularity (reflected using tf) of v (Po(v)). Inf(f) is defined in Equation 3.4. The numerator

N is the total number of entities in the knowledge graph G while the denominator is the number of

entities that have the feature f . Po(v) is the number of distinct triples in the knowledge graph G

that has the matching value v. Following the IR tradition we take the log of this value as expressed

in Equation 3.5.

The ranking of features within a facet is then the product of the informativeness of the feature

and popularity of the value as defined in Equation 3.6. The intuition is that a feature (property-

value pair) should be relatively rare (i.e., informative) to be interesting and not the property alone.

For example, consider the example “residence” as the property where many person type entities

have this property defined for them. For a summary, it is not important how unique or popular a

3.2. FACETED ENTITY SUMMARIZATION 44

(1) (2) (3) (4) (5)

Figure 3.5: Flow of steps in creating faceted entity summaries.

property name is, but how distinct is the property-value combination. Property “residence” may

be popular in a dataset but when it says residence is “White House”, it is important to see how

often other entities have both this property name and the value. This intuition helps to uniquely

identify and distinguish the entity from others. In this case, informativeness is higher. Also when

the value is popular in the dataset, it tends to help form a more human readable summary (because

they are well known). Because we like to maximize both uniqueness and popularity (note that it

is uniqueness of features and popularity of values), the ranking score is composed of product of the

two scores.

Inf(f) = log(
N

|{e|f ∈ FS(e)}|
) (3.4)

Po(v) = log|{triple t ∈ D|∃ e, f : t ≡ (e Prop(f) v)}| (3.5)

Rank(f) = Inf(f) ∗ Po(V al(f)) (3.6)

3.2.2.3 Faceted Entity Summary Creation

The sequence of steps for faceted entity summary creations is shown in Figure 3.5. For a given entity

e and a positive integer k (which is < |FS(e)|), the steps are as follows.

1. Get the feature set FS(e) for the entity e.

2. Each feature f in FS(e) is enriched to have a wordset WS(f).

3.3. EVALUATION 45

3. The enriched feature set FS(e) is input to the partitioning algorithm to create facets. The

algorithm yields a dendrogram (hierarchical tree) for FS(e) that is cut at a desired level to get

the facet set F (e) of FS(e).

4. The features in each facet are ranked using the ranking algorithm.

5. The top ranked features from each facet are picked according to Definition 6 (typically in a

round robin fashion through the facets) to form the faceted entity summary of length k. In this

implementation, we avoid picking features that have the same property name from each facet

when k > |F (e)|.

Note that in this implementation of FACES, we do not rank facets but rank only features in each

facet. Therefore, when k < |F (e)|, selecting a facet (to pick the highest ranked feature in the facet)

is random. We will discuss ranking facets and other improvements over this in Chapter 4.

3.3 Evaluation

The evaluation of our novel approach to entity summarization is conducted in two ways, both com-

paring ours to the state-of-the-art systems: (1) Using a manually created gold standard and (2)

Analyzing user preference. The state-of-the-art summarization approaches we considered in our

evaluation are RELIN [Cheng et al. 2011] and SUMMARUM [Thalhammer and Rettinger 2014].

We picked these two because, RELIN outperformed earlier entity summarization tools in the litera-

ture and SUMMARUM is DBpedia specific. RELIN works on both object and datatype properties

whereas SUMMARUM works only on object properties. We did not choose domain specific sum-

marization tools like [Thalhammer et al. 2012] as they are not applicable in general and require

additional domain specific usage data. We do not consider the graphical entity summarization

[Sydow et al. 2013] approach as it is different from an entity summarization captured by RELIN and

FACES.

3.3. EVALUATION 46

We selected the DBpedia dataset for our evaluation as it was the benchmark dataset selected

in [Cheng et al. 2011] and contains entities that belong to different domains. We created a gold

standard for the evaluation due to unavailability of the evaluation data of RELIN (as confirmed

by the authors of RELIN). We randomly selected 50 entities 2 from DBpedia (English version 3.9)

that have at least 17 distinct properties per entity. The average number of distinct features per

entity is 44. Further, RELIN’s results and user agreement for ideal summaries are not the same

as those reported in [Cheng et al. 2011] because of the differences in the test set. We filtered out

schema information and dataset dependent details such as dcterms:subject, rdf:type, owl:sameAs,

wordnet type and Wikipedia related links to ease manual evaluation and further they do not express

facts about the entities. We extracted object-type properties for this dataset as that is our focus

now. Further, use of object-type properties is consistent with SUMMARUM, and hence enables a

meaningful comparison. We asked 15 human judges with background in Semantic Web to select 5 and

10 feature length summaries for each of the entities. These are referred to from now on as the ideal

summaries. The judges were not given specific information about any system and asked to select a

summary that can best represent the entity (facilitate quick identification). We provided them the

Wikipedia page link of each entity in case they needed additional information about an unfamiliar

entity. Each entity has at least 7 ideal summaries from 7 different judges and this comprises the

gold standard for the evaluation. All experiments were performed using a Core i7 3.4 GHz Desktop

machine with 12 GB of RAM. We replicated DBpedia dataset locally and used caches for RELIN as

mentioned in [Cheng et al. 2011]. More details about the approach and gold standard dataset can

be found at the web page3.

2Selected entities are from the domains of politician, actor, scientist, song, film, country, city, river, company,

game, etc
3http://wiki.knoesis.org/index.php/FACES, accessed 04/10/2017

3.3. EVALUATION 47

3.3.1 Evaluating with the Gold Standard

Our objective is to show that faceted entity summaries produce results that are closer to human

judgment. We configured FACES that produces the best possible results and RELIN according to its

recorded optimal configuration. We empirically determined that cutting FACES cluster hierarchies

at level 3 gave good results. We also set the cut-off threshold of Cobweb to 5, which gave the

optimal results. For RELIN, we set the jump probability and number of iterations to 0.85 and 10,

respectively. Authors of RELIN provided the source code of RELIN in absence of the evaluation

data to replicate the environment. We replaced Google search service with Sindice API4 as Google

search API was no longer free of charge (for Point-wise Mutual Information (PMI) computation

in RELIN). Sindice indexes the LOD data and is adequate for this purpose. Further, we collected

Google API and Sindice API search hits for a small random sample (5 entities) and applied RELIN

to both API search hits. The results confirmed that the difference is negligible.

Agreement =
2

n(n− 1)

n∑
i=1

n∑
j=i+1

|SummI
i (e, k) ∩ SummI

j (e, k)| (3.7)

Quality(Summ(e, k)) =
1

n

n∑
i=1

|Summ(e, k) ∩ SummI
i (e, k)| (3.8)

We use the evaluation metrics used in [Cheng et al. 2011]. When there are n ideal summaries

for summary length k denoted by SummI
i (e, k) for i = 1, .., n and an automatically generated

summary denoted by Summ(e, k) for entity e, the agreement among ideal summaries is measured by

Equation 3.7 and the quality of the automatically generated summary is measured by Equation 3.8.

In other words, quality of an entity summary is its average overlap with the ideal summaries for the

entity. Our evaluation results and statistics are presented in Table 3.2. We modified the original

RELIN algorithm to discard duplicate properties and named it as RELINM in Table 3.2. The

modification did not yield much improvement in the results and this was to test whether re-ranking

4http://sindice.com/developers/searchapiv3, service was accessible until May 2014

3.3. EVALUATION 48

System

Evaluation 1 - Gold standard Evaluation 2 -

User preferencek = 5 k = 10

Avg.

Quality

FACES

% ↑

Time/Entity Avg.

Quality

FACES

% ↑

Study 1 Study 2

FACES 1.4314 NA 0.76 sec. 4.3350 NA 84% 54%

RELIN 0.4981 187 % 10.96 sec. 2.5188 72 % NA NA

RELINM 0.6008 138 % 11.08 sec. 3.0906 40 % 16% 16%

SUMMARUM 1.2249 17 % NA 3.4207 27 % NA 30%

Avg. Agreement 1.9168 4.6415

Table 3.2: Evaluation of the summary quality and FACES %↑ = 100 * (FACES avg. quality - Other

system’s avg. quality) / (Other system’s avg. quality) for k=5 and k=10, respectively, and average

time taken per entity for k=5 for Evaluation 1. Evaluation 2 measures user preference % for each

system. (NA stands for Not Applicable)

mechanisms can improve RELIN results. We ran each algorithm for all the 50 entities 5 times and

recorded the average time taken per entity in seconds. According to the results, FACES achieved

138% and 40% increase in quality against RELINM and 187% and 72% increase in quality against

RELIN, and 17% and 27% increase in quality against SUMMARUM for k=5 and k=10, respectively.

Even though FACES achieves superior results compared to RELIN, it does not compromise its

efficiency. FACES is much more efficient (14 times faster) than RELIN as shown in Table 3.2

in summary computation (i.e., running time). Time for SUMMARUM has been marked as not

applicable (NA) as we got results from a black box web service but can be assumed to be similar to

RELIN. FACES can be further improved to compute summaries on the fly.

We conducted the paired t-test to confirm the significance of the FACES’s mean summary quality

improvements over others. For k = 5 and k = 10, p-values for FACES against RELINM are 2.04E-10

and 1.92E-14 and for FACES against SUMMARUM are 0.029 and 3.71E-7. When p-values are less

than 0.05, the results are statistically significant.

3.4. DISCUSSION 49

3.3.2 Evaluating with User Preference

We carried out two blind user evaluations (users didn’t know which system produced which sum-

maries) to see how users rated summaries created by FACES, RELINM, and SUMMARUM. We

randomly selected 10 instances from our evaluation sample and created k = 5 length summaries and

had 69 users participate in the evaluation. The results are shown in Table 3.2. For the first user

evaluation, we showed them summaries of FACES and RELINM side by side and asked them to

select the best summary that helped them to identify the entity. The users average preference was

84% for FACES and 16% for RELINM. This shows that unique properties alone are not desirable

to humans. In the second user evaluation, we showed users all three system summaries and their

preferences were 54%, 16%, and 30% for FACES, RELINM, and SUMMARUM, respectively. This

shows that users sometimes prefer popularity as in SUMMARUM but not in all the cases. RELINM

got almost the same percentage in both experiments reflecting that users preferred unique features

for some entities. Moreover, results suggest that users like a balanced (unique and popular) and

diversified approach like in FACES and confirm our claim that the diversity makes summaries more

human friendly.

3.4 Discussion

In summary, our evaluation shows that FACES performs better in all cases. It was able to achieve

138% and 40% increase over RELINM and 17% and 27% increase over SUMMARUM in summary

quality for k=5 and k=10, respectively. The results of the paired t-test confirms that FACES results

are not random and consistently outperforms the other two systems. FACES achieves this by its

non-trivial facet identification process and persistence in selecting a diverse summary based on the

facets. Note that agreements between ideal summaries are not very high in the sample dataset due

to the large number of distinct features present in each entity (see Table 3.2). The second evaluation

shows that the faceted summaries are desired by human users.

3.4. DISCUSSION 50

<birthPlace, Warsaw>

<workInstitutions, University of Paris>

<field, Physics>

<spouse, Pierre Curie>

<deathPlace, Passy, Haute-Savoie>

<isPrimaryTopicOf, Marie_Curie>

<wasDerivedFrom, oldid=547107936>

<knownFor, Polonium>

<almaMater, ESPCI>

<deathPlace, Passy, Haute-Savoie>

<birthPlace, Poland>

<birthPlace, Warsaw>

<birthPlace, Russian_Empire>

<field, Physics>

<field, Chemistry>

FACES RELINM SUMMARUM

Figure 3.6: Entity summaries for the entity Marie Curie by each system. k = 5 and the size of

feature set is 39.

FACES behaves similar to an ordinary summarization algorithm such as RELIN and SUM-

MARUM when there are few facets available. It behaves as if it is ranking a flat list of features. A

key reason why RELIN (including RELINM), which is based on PageRank that exploits both in-

formativeness and relatedness measures, underperforms is that the summary can include redundant

and correlated features. This also affects SUMMARUM. The redundancy comes at the expense of

reduced coverage. We address this limitation by emphasizing diversity to suppress redundant fea-

tures5 and improve coverage by identifying facets to pick representative features. Figure 3.6 shows

summary examples generated by the three approaches for the entity Marie Curie.

We observed that sometimes FACES clusters features differently from what we expect. For

example, spouse property of Barack Obama is clustered into a facet that contains vicePresident

property. This happens because sometimes typing information of values is too specific6 and affects

the clustering process. Moreover, FACES performs better in almost all cases according to the

second evaluation except for some specific entities. E.g., Usain Bolt is an Olympic athlete with

many records. Some users preferred facts about his 100 meter records over his 200 meter records,

while both information were present in a facet. FACES can generate either of the two facts in a

summary (based on a subjective ranking within a facet) and the tie can be broken. We can further

investigate how to effectively combine diversity, uniqueness, and popularity of features as the user

preference varies. Furthermore, clustering phase of FACES can be tuned for fine grained grouping by

5May not be syntactically the same but conceptually similar
6Michelle Obama’s typing information is similar to a politician

3.5. CONCLUSION 51

modifying the enrichment process. E.g., adding hyponyms to the word set makes features containing

birthPlace and stateOfOrigin properties fall into different facets.

Limitations

FACES identifies different groups that are conceptually similar using type information of the values

of the features and hypernyms retrieved for properties of the features. FACES can successfully create

faceted entity summaries for object properties where object properties have types associated with

values. Further, we use WordNet lexical database to retrieve hypernyms and all available hypernyms

(for all senses) are used. Even though Cobweb algorithm is claimed to be “less sensitive” for the

order of input features, it is not guaranteed to produce the same groupings all the time.

3.5 Conclusion

We have investigated how to create entity summaries that are concise and comprehensive for the

purpose of quick identification of an entity. We adapted a well known incremental hierarchical

conceptual clustering algorithm for entities (in RDF format) to identify facets (that addressed di-

versity) and developed intra-cluster ranking algorithm for features (that addressed uniqueness and

popularity) to create faceted entity summaries. We showed that faceted entity summaries created by

combining diversity, uniqueness, and popularity are better representatives for an entity and closer

to ideal ones. Our approach shows superior results (improvement in summary quality in the range

17% - 187%) and does not require pre-computation of values like the existing systems.

In the next chapter, we discuss ways of incorporating datatype properties into faceted entity

summaries by typing them and improving the algorithm by ranking facets. Further, we introduce

new ranking equations specifically tailored for datatype property based features.

4

Typing Literals in RDF Triples for

Improving Coverage of Features in

Entity Summarization

The importance of entity summarization has been discussed in Chapter 3 in the context of volume

of structured information becoming available on the Web. We introduced a novel approach called

FACES for creating diversity-aware entity summaries for object property-based features. In this

chapter, we investigate how to incorporate datatype properties into entity summaries which can

improve the coverage of information in an entity summary.

The RDF has been used extensively to encode information and publish as Semantic Web datasets

and knowledge graphs. The direct consumers of these datasets, most of the time, are machines or

software such as search and rank services. Therefore, it is imperative to enrich the datasets with

additional information so that machines can interpret them properly. Assigning ontology classes as

types to resources (typing) in RDF via the rdf:type property (which we refer to as semantic types)

is one example of a data enrichment process. This can help machines to identify similar or related

52

53

resources by analyzing their types. Such enrichment can be exploited to improve the quality and

reliability of datasets and facilitate analytics. Typing is performed on URI resources and, hence,

only applies to object properties. On the other hand, datatype property values are literals, and

are usually associated with types by virtue of their syntactic data representation (which we refer to

as syntactic types). For example, one assigns datatypes such as xsd:string, xsd:integer, and

xsd:date to literals.

Syntactic types do not make explicit information that can be exploited for data analysis. How-

ever, the amount of information that datatype properties represent compared to object properties is

significant in some real-world datasets. For instance, DBpedia, which is one of the largest and most

comprehensive encyclopedic datasets on the Web, has 1,608 datatype properties compared to 1,103

object properties in its 2016-04 English version. Many of the literal values (other than noise) can

be associated with types selected from a set of ontology classes that can promote proper semantic

interpretation and use. For example, the property http://dbpedia.org/property/location has

about 1,05,047 unique and simple literals that can be mapped to entities to infer the types (e.g.,

“California”, “United States”).

The importance of type information has been demonstrated by researchers in the Semantic Web

community, including for inferring missing types for entities [Paulheim and Bizer 2013], ranking types

for entities [Tonon et al. 2013], and generating summaries using type graphs [Tylenda et al. 2011]. All

these approaches make use of existing type information of “entities” or infer additional/missing types

from them. There has not been any work related to inferring or computing types for literals in RDF/S

datasets. In this work, we propose to address the issue of computing “semantic types” whenever

possible for literal values of datatype properties. When types are available for datatype properties,

they can be used in many interesting applications including but not limited to data integration,

property alignment, and entity summarization. For example, in property alignment [Gunaratna et al.

2013; Gunaratna et al. 2014], we can utilize types to prune the candidates for alignment. Further,

type prediction on datatype properties provides benefits similar to the works on type prediction

4.1. TYPING LITERALS IN RDF TRIPLES 54

for entities as in SDType [Paulheim and Bizer 2013]. We demonstrate the application of generated

semantic types by extending the FACES entity summarization algorithm, which we described in

Chapter 3 and show how to group and rank features based on datatype properties [Gunaratna et al.

2016]. Our contributions in this work are twofold:

1. We analyze the object value of datatype properties and select a suitable class as the type from

a given set of ontology classes.

2. We extend FACES and implement FACES-E [Gunaratna et al. 2016] to group and rank both

object and datatype properties to create entity summaries and demonstrate the usefulness of

types to generate comprehensive entity summaries.

4.1 Typing Literals in RDF Triples

In this section, we describe the problem and present the approach to generate types for literals in

knowledge graphs.

4.1.1 Object Property and Datatype Property

OWL defines two types of properties: (i) object properties that connect individuals to individuals

and (ii) datatype properties that connect individuals to data values (literals) 1. The object value of

an object property is a URI that can be assigned an ontology class as its type via rdf:type property.

But object values of datatype properties do not have ontology classes assigned as types and the only

types available for them are the syntactic types referring to primitive, low-level implementation

types. Figure 4.1 illustrates the difference of the two properties.

1http://www.w3.org/TR/owl-ref/#Property, accessed 04/10/2017

4.1. TYPING LITERALS IN RDF TRIPLES 55

dbr:Barack_Obama dbr:Joe_Biden
dbp:vicePresident

“44th President of the United States”^^xsd:string

dbo:Politician
rdf:type

Object Property

Datatype Property

Ontology Class

Implementation type

Figure 4.1: An object and datatype property instances for the entity Barack Obama in DBpe-

dia. dbo, dbp, and dbr represent http://dbpedia.org/ontology, http://dbpedia.org/property, and

http://dbpedia.org/resource namespaces, respectively.

4.1.2 Problem Analysis

Datatype properties do not have ontology classes assigned as types for their values but have only

implementation types assigned. In this work, we try to suggest a class from a given set of classes

as the type of the literal of the datatype property. See Figure 4.2 which shows two triples ((2) and

(3)) having datatype properties of the entities dbr:Barack Obama and dbr:Calvin Coolidge taken

from DBpedia. The dotted boxes show the types for the two literals that we intend to compute,

supplementing the syntactic type xsd:string which is already available. Whenever a semantic type

can be computed for a literal, it can be used in practical applications for inferencing, grouping, and

matching. For example, both computed types for the values of the two datatype properties, that

is dbo:President and dbo:Governor, are rdfs:subClassOf dbo:Politician class in the DBpedia

ontology and hence can be utilized for grouping them together based on the type (considering the

fact that they both represent politicians).

Datatype properties may have been provided instead of object properties for entities in datasets

for various reasons, such as (i) the creator was unable to find a suitable entity URI for the object

value, and hence chose to use a literal instead, (ii) the creator of the triple did not want to attach

more details to the value and hence represented it in plain text, (iii) the value contains only basic

4.1. TYPING LITERALS IN RDF TRIPLES 56

dbr:Barack_Obama dbr:Joe_Biden
dbp:vicePresident

“44th President of the United States”^^xsd:string

dbo:Politician

dbp:shortDescription

rdf:type

dbr:Barack_Obama

dbo:President

“48th Governor of Massachusetts”^^xsd:string
dbo:orderInOffice

dbr:Calvin_Coolidge

dbo:Governor

dbo:Politician

(1)

(2)

(3)

rdfs:subClassOf

rdfs:subClassOf

Figure 4.2: Two triples corresponding to datatype properties and one triple corresponding

to an object property taken from DBpedia. Computed types are shown in dashed boxes.

dbo, dbp, and dbr represent http://dbpedia.org/ontology, http://dbpedia.org/property, and

http://dbpedia.org/resource namespaces, respectively.

implementation types like integer, boolean, and date, and hence not meaningful to create an entity,

or (iv) the value has a lengthy description spanning several sentences (e.g., dbo:abstract property

in DBpedia) that covers a diverse set of entities and features. We attempt to assign a semantic

type by analyzing cases (i) and (ii) for text (up to a sentence long, delimited by a period) and avoid

assigning a “type” to lengthy literal values as mentioned in (iv) because its focus may not be clear

(and multiple conflicting types can result).

4.1.2.1 Problem Statement

Let S P O be an RDF triple specifying subject (S), property (P), and object (O), and C be all

classes (in the schema) for the set of triples D. If P is an object property, then O is an entity (i.e.,

individual). The type of O is a class assignment to O via the RDF triple, O rdf:type c, where c

∈ C. We refer to this as “semantic typing” in this work. Since the value of a datatype property

instance is a literal, no semantic typing can be readily found for the value. We want to suggest a

class c̄ ∈ C for the value of a datatype property in addition to the syntactic type. We focus on text

4.1. TYPING LITERALS IN RDF TRIPLES 57

that is up to one sentence long. This realistic restriction has been imposed to ensure entity and type

coherence. That is, we avoid deriving a unique type for longer texts, say a paragraph. Figure 4.2

illustrates types suggested for the object values of the triples (2) and (3).

For clarity of presentation, we define Type Set (TS(v)) for property value v as the set of classes

that are assigned (via rdf:type) or inferred (via rdfs:subClass Of) from the class set C. If p is

an object property, then |TS(v))| > 0, otherwise |TS(v)| = 0.

4.1.3 Type Generation for Literals

Recall that we are interested in typing literals in RDF triples. These literals appear in object

position where the property of the triples is of type datatype property. Determining the relevant

type for a datatype property value is challenging due to several reasons. First, picking some term

used in the literal value to determine the entity or class for the datatype property value does not

work. For example, in triple (3) in Figure 4.2, if we select the term “Massachusetts” as the entity to

represent the entire value and use its type dbo:PopulatedPlace as the type, we obtain an incorrect

interpretation. The main focus of the text is the term “Governor” and not “Massachusetts”, as it

intends to conveys information about the governor. Therefore, we propose identifying this term,

which we call the focus term, by analyzing the grammatical structure of the text. Then, we match

the identified focus term to a suitable entity or a class in deriving the type for the value.

We utilize the Collins head word detection technique [Collins 2003] to identify the focus terms.

The Stanford CoreNLP 2 API offers an implementation of this technique using parse trees. We use

the UMBC semantic similarity service [Han et al. 2013] to compare the suggested class and the set

of given classes. It facilitates the computation of phrase similarity, which generalizes and improves

upon WordNet-based similarity. The algorithm for generating a type set (TS(v)) for a datatype

property value v is presented in Algorithm 2.

Algorithm 2 shows details of the method getTypesForText, which generates types for the input

2http://nlp.stanford.edu/software/corenlp.shtml, accessed 04/10/2017

4.1. TYPING LITERALS IN RDF TRIPLES 58

Algorithm 2 getTypesForText(Text v)

1: initialize Set types to {} and pre-determined Integer n

2: Set X ← getPhrases(v)

3: for each Phrase x ∈ X do

4: if isNumeric(x) then

5: Set cls ← predefined date/numeric type

6: else

7: Set ngrams ← getNGrams(x, n)

8: Text focusTerm ← parseHeadWord(x) {head word identifier}

9: Set cls ← getTypeFromLabel(focusTerm)

10: if isEmpty(cls) then

11: cls ← getTypesFromNGrams(focusTerm, ngrams)

12: end if

13: if isEmpty(cls) then

14: cls ← getMatchedType(focusTerm) {semantic matching}

15: end if

16: end if

17: types ← cls

18: end for

19: return types

4.1. TYPING LITERALS IN RDF TRIPLES 59

text (datatype property value). We avoid processing if the input text is more than one sentence

long (segmented by “period”). If the identified sentence has phrases delimited by comma, we seg-

ment them at comma (lines 2-3) and generate types for them. This is because these segments nor-

mally align for the same abstract meaning (e.g., “Austrian-American bodybuilder, actor”, “Denison,

Texas”). We identify numeric or date values using simple regular expressions (lines 4-5). If the value

is not numeric, we start the type computation process for the phrase by identifying n-grams asso-

ciated with the phrase up to the maximum token length of n (line 7). Then, we retrieve the focus

term by parsing the phrase using the head word identifier (line 8). Next, we check whether there is

an exact match of the focus term and any of the types (via rdfs:label of classes) in the dataset. If

a match is found, we take the class as the type of the phrase (line 9). Otherwise, we further analyze

all the generated n-grams with the focus term to infer a type in the getTypesFromNGrams method

(line 11). If there is still no match, we compute the similarity scores of the focus term against all

the types in the dataset (via rdfs:label of classes) and get the highest match (> 0) as the type

of the phrase (line 14). Finally, we aggregate types generated for each phrase to obtain the set of

types for the input text.

The method getTypesFromNGrams processes the n-grams set to allow for a maximal match of

entity labels. It processes n-grams to extract types only if they contain the focus term. For each of

those n-grams that contain the focus term, we check to see whether there is an exact match of the

n-gram to a type. If no match is found, we spot entities for the n-gram and then get the types of

those entities. We spot entities by exact matching of their labels (rdf:label) to n-grams. Looking

for n-grams that contain the focus term (in descending order of n-gram token lengths from n to

1) can improve the quality of the identified types. For example, consider “Harvard Law School”

as a datatype property value in DBpedia. The identified focus term for this phrase is “School.”

When we start processing n-grams in descending order of n, we encounter “Harvard Law School”

as the first candidate for typing. This matches the entity dbr:Harvard Law School whose type

dbo:Educational Institution is then taken as the type of the phrase. We do not generate types

4.1. TYPING LITERALS IN RDF TRIPLES 60

Property Value Generated Types

Team Knight Rider Television Show, Work

American politician, 44th President of the United States Agent, Politician, Person, President

List of The Cosby Show episodes List

English Language

Lung cancer Disease

Table 4.1: Types generated for a sample of values.

for long text3 (e.g., paragraphs) because they cannot be unambiguously typed as they can represent

many different entities (with contrasting descriptions) and need further analysis to pick the correct

type. Table 4.1 shows examples for the computed types for a sample of literal values taken from

DBpedia entities.

4.1.4 Evaluating Type Generation for Datatype Property Values

Generating types for all the available datatype property values is not meaningful because there are

labeling properties that simply represent human readable names for entities. The RDFS standard

defines the rdfs:label property to provide such information, but in practice, there exist many such

labeling properties (e.g., foaf:name). Ell et al. [Ell et al. 2011] studied the characteristics of these

properties by manually inspecting the properties and their instance data. Similarly, we created a list

of labeling properties for our data sample and filtered them out. We extracted a sample of unique

datatype property-value pairs from DBpedia (version 3.9 and 2015-04). Precision for the identified

types of a property value v is defined in terms of TS(v) in Equation 4.1. Then, we define the Mean

Precision (MP) of property values as in Equation 4.2, where n is the number of property values in

the sample that have |TS(v)| > 0.

3Note that we can still run the algorithm for each sentence to generate types.

4.1. TYPING LITERALS IN RDF TRIPLES 61

Precision(TS(v)) =
#correct types in TS(v)

|TS(v)|
(4.1)

MeanPrecision =

∑n
i=1 Precision(TS(val(fi)))

n
(4.2)

Mean Precision is the average of precision over the property values in the feature sample. When

the MP value is higher, the algorithm generates many correct types over different property values.

It is important to know how often the algorithm can generate at least one correct type. Therefore,

we define Any Mean Precision (AMP) as in Equation 4.3, where n is the number of property

values in the sample that have |TS(v)| > 0. It computes the average of all the ceiling values of

Precision(TS(v)). If the algorithm generates at least one correct type for a value, it counts the

precision as 1 in averaging. When AMP is higher, the algorithm generates at least one correct type

often. These metrics are useful for comparing different algorithms.

AnyMeanPrecision =

∑n
i=1dPrecision(TS(val(fi)))e

n
(4.3)

Mean Precision (MP) Any Mean Precision (AMP) Coverage

Our approach 0.8290 0.8829 0.8529

Baseline 0.4867 0.5825 0.5533

Table 4.2: Type generation evaluation. DBpedia Spotlight is used as the baseline system.

Table 4.2 shows the evaluation results performed by one evaluator. We constructed a baseline

using a state-of-the-art tool to identify entities in the values and retrieved their types and super

types (except owl:Thing). Specifically, we used DBpedia Spotlight [Mendes et al. 2011] for this

purpose and configured it with default parameters including the confidence of 0.5. We had a total

of 1,117 unique property-value pairs after filtering out 118 labeling and noisy pairs. Coverage is the

fraction of features that had a type generated. Our approach performed better compared to the

baseline because we identify types using a combination of focus terms and matching entities and

4.2. INCORPORATING DATATYPE PROPERTIES INTO FACETED ENTITY SUMMARIES62

types. We did not measure recall because it is hard to produce an exhaustive list of all correct types

for each value.

4.2 Incorporating Datatype Properties into Faceted Entity

Summaries

Ranking and grouping (clustering) object property-based features is discussed in Section 3.2.2 of

Chapter 3. But these cannot be directly applied to datatype property-based features for many rea-

sons like object value is not a URI and hence type information is not available and searching literals

for frequency is not desirable. Therefore, we adapt them and generate faceted entity summaries for

both types of properties.

4.2.1 Problem Statement

Ranking and grouping features of object properties can be achieved using the entities that their

values represent. For ranking, we can utilize Equations 3.4 to 3.6, and for grouping semantically

related features, we could use their types as discussed in Chapter 3. Ranking features belonging

to datatype properties cannot be done similarly because their literal values do not have a unique

representation across the dataset (which URIs do provide for object properties) as the same entity

may be referred to using minor variants of a literal. Therefore, we need to reflect related entities

in ranking datatype properties by modifying Equations 3.4 to 3.6. For example, consider the third

triple of Figure 4.2 where we can spot: dbr:Governor and dbr:Massachusetts; here, we can use

their frequency as opposed to checking the frequency of the entire literal value of the property.

Grouping (conceptually similar) datatype properties is non-trivial compared to grouping object

properties where types are available. Note that multiple entities and/or classes spotted in a datatype

property value can confuse the groupings. For example, the second triple in Figure 4.2 has the

entity dbr:United States having the type dbo:Country but eventually results in the class dbo:

4.2. INCORPORATING DATATYPE PROPERTIES INTO FACETED ENTITY SUMMARIES63

President as the type. In general, this requires recognizing multiple types (e.g., country and

president) and then resolving them suitably (e.g., to president) to enable the grouping of similar

triples (among both object and datatype properties). See triples (1) and (2) in Figure 4.2, where

the first represents an object property and the second represents a datatype property. In fact, both

values convey information about a person, while for the datatype property value, it is not explicit.

The object property clearly has a type assigned to its value and if we compute the type for the

datatype property as dbo:President, then we can abstract their values to type dbo:Politician

which can be inferred for the datatype property value using rdfs:subClassOf.

4.2.2 Grouping Datatype Property Features

Grouping of features can be done at two levels: exact/syntactic similarity and semantic/abstract

similarity. Exact/ syntactic similarities can result in very fine-grained groups, while we are interested

in groups based on their abstractions as in FACES. For example, triples (2) and (3) in Figure 4.2

present two literal values that do not share any common token (no/less syntactic similarity). How-

ever, when we compute a type for each, they are sub-types of the class dbo:Politician. The

clustering algorithm that uses such type information of the values as in FACES can group them

together. Further, it can also group features of both object and datatype properties which was

hitherto not possible. For example, it can group features represented by triples (1) and (2) in Fig-

ure 4.2 because the values are indirect instances of the type dbo:Politician. Figure 4.3 illustrates

grouping of similar features with same color using the clustering algorithm presented in Chapter 3.

4.2.3 Ranking Datatype Property Features

We discuss ranking measures for datatype properties usable in the context of entity summarization.

Recall that Equations 3.4 to 3.6 can be used only to rank object properties. If we compute Inf(f)

as in Equation 3.4 for datatype properties, it will have an artificially high value because the exact

literal denoting an entity appears infrequently compared to URI references of the entities for object

4.2. INCORPORATING DATATYPE PROPERTIES INTO FACETED ENTITY SUMMARIES64

dbr:Barack_Obama dbr:Hawaii

dbr:Joe_Biden

“44th President of the United States”^^xsd:string

dbo:birthPlace

dbp:shortDescription

Figure 4.3: Grouping both property features. dbo:birthPlace and dbp:vicePresident are ob-

ject properties and dbp:shortDescription is a datatype property. dbo, dbp, and dbr repre-

sent http://dbpedia.org/ontology, http://dbpedia.org/property, and http://dbpedia.org/resource

namespaces, respectively.

properties. As a consequence, every datatype property will have a high ranking score. To fix this

discrepancy, we spot entities in datatype property values and get the frequency of entity URIs as

a measure of informativeness and popularity. We first spot entities in the datatype property values

by analyzing the n-grams generated in Algorithm 2. Let ES(v) be the set of all entities that can

be spotted for value v = V al(f). We process all the n-grams generated for v (for a pre-defined

n-gram token length n) and match them against the entity labels (rdfs:label) in the dataset to

obtain ES(v). Then, we choose the most popular (frequent) entity in the dataset from this set as

the representative entity for v. The intuition is that humans spot and identify popular entities in

text phrases and, hence, they can provide identifiable facts in the summary for datatype properties.

Let max(ES(v)) be a function that returns the most popular entity emax from the set ES(v) based

on the frequency of appearance of each entity (using Equation 3.5). For example, for triple (2) in

Figure 4.2, function max identifies dbr:President and dbr:United States as the entities and picks

the latter to be the most popular entity. Hence, it is used to calculate the informativeness of the

feature and popularity of the phrase.

We compute the informativeness of a feature f of a datatype property, Inf(f)′, using Equa-

tion 4.4. We check for occurrences of features in entities “similar” to f (as opposed to checking

4.2. INCORPORATING DATATYPE PROPERTIES INTO FACETED ENTITY SUMMARIES65

the same feature as in object properties) by matching datatype property names and values that

contain the most popular entity emax. Then, we count those entities to compute informativeness

of the feature. That is, informativeness is inversely proportional to the number of entities that are

associated with overlapping values containing emax. N is the total number of entities.

Inf(f)′ = log
(N

|{e ∈ E|∃ f
′ ∈ FS(e) : Prop(f) = Prop(f ′) and

max(ES(V al(f))) ∈ ES(V al(f ′))
}|

)
(4.4)

Similarly, for measuring the popularity Po(v)′ of a datatype property value v, we take the

frequency of the most popular entity emax = max(ES(v)) in v, as specified in Equation 4.5. Then,

the ranking score of feature f that belongs to datatype properties, Rank(f)′, is calculated using

Equation 4.6. When ES(v) = ∅, we take the denominator as the number of property instances in

Equation 4.4 and Po(v)′ = 1 in Equation 4.5, effectively ranking them low.

Po(v)′ = log|{ triple t ∈ D|∃ e, f : t ≡ (e Prop(f) emax)and
emax = max(ES(v))

}| (4.5)

Rank(f)′ = Inf(f)′ ∗ Po(V al(f))′ (4.6)

4.2.4 Faceted Entity Summaries using Object and Datatype Properties

Equations 3.4 - 3.6 (which are mentioned in Chapter 3) and Equations 4.4 - 4.6 are used to rank

features within each facet (cluster partition). We further extend the FACES approach by ranking

facets using the average of feature ranking scores (FacetRank(F (e))) generated by Equations 3.6

and 4.6, as shown in Equation 4.7 for a facet F (e). R(f) is a function that selects the proper

ranking method depending on whether Prop(f) is an object or datatype property. Then, facets are

ordered from the highest to the lowest FacetRank score and we iterate over them in that order to

pick individual features for the summary.

4.2. INCORPORATING DATATYPE PROPERTIES INTO FACETED ENTITY SUMMARIES66

R(f) =


Rank(f), if Prop(f) is an object property

Rank(f)′, otherwise

FacetRank(F (e)) =

∑
f∈F (e)R(f)

n
, where n = |F (e)| (4.7)

Given the feature set FS(e) of an entity e and a positive integer k < |FS(e)|, the adapted process

for the faceted entity summary creation is as follows.

1. The feature set FS(e) is partitioned into facets. The algorithm yields a dendrogram (hierarchical

tree) for FS(e) and it is cut at an empirically determined level to get the facet set F (e) of FS(e).

2. Features in each facet are ranked using the ranking algorithms (Equations 3.6 and 4.6).

3. Then the feature ranking scores of features in each facet are aggregated and averaged to get the

facet ranking score (Equation 4.7).

4. The top ranked features, from highest to lowest ranked facet, are picked (Definition 6) in a

round robin fashion to form the faceted entity summary of length k.

4.2.5 Evaluating Faceted Entity Summaries with Both Types of Proper-

ties

We evaluated the proposed extended faceted entity summarization approach FACES-E against an-

other state-of-the-art algorithm called RELIN [Cheng et al. 2011]. It has been shown before in

Chapter 3 that FACES outperformed RELIN for object properties. RELIN has been the only tool

to generate entity summaries for both datatype and object properties. We evaluate FACES-E against

RELIN for the full range of features and show the benefits of the datatype property typing which

enabled FACES-E to group features belonging to object and datatype properties in the partition

algorithm. We randomly selected 20 entities from the initial FACES evaluation (using DBpedia 3.9)

in Chapter 3 and another random sample of 60 entities from DBpedia version 2015-04 for a total of

4.2. INCORPORATING DATATYPE PROPERTIES INTO FACETED ENTITY SUMMARIES67

80 unique entities. We retrieved object properties as mentioned in Chapter 3 and added datatype

properties to each entity, filtering labeling properties (including date and numeric). We created a

new gold standard for the entity samples by asking 17 human users to create summaries of length

5 and 10 for each of the 80 entities as the “ideal summaries” (total of 900 user-generated ideal

summaries for both summary lengths). Each entity received at least 4 different ideal summaries and

this comprises the gold standard. The evaluation metrics are the same as mentioned in Chapter 3.

That is, the summary quality is measured by Equation 3.8 and the agreement of user generated

summaries are computed using Equation 3.7.

System
k = 5 k = 10

Avg. Quality %↑ Avg. Quality %↑

FACES-E 1.5308 – 4.5320 –

RELIN 0.9611 59 % 3.0988 46 %

RELINM 1.0251 49 % 3.6514 24 %

Avg. Agreement 2.1168 5.4363

Table 4.3: Evaluation of the summary quality (average for 80 entities) and %↑ = 100 * (FACES-E

avg. quality - Other system avg. quality) / (Other system avg. quality) for k=5 and k=10, where

k is the summary length.

We used previously determined thresholds for both FACES-E and RELIN. RELINM is the mod-

ified version of RELIN where it discards duplicate properties in the summary. For FACES-E, we cut

cluster hierarchies at level 3 and set the cut-off threshold of the clustering algorithm (Cobweb) to 5.

For RELIN and RELINM, we set the jump probability to 0.85 and the number of iterations to 10.

The evaluation results of entity summarization are presented in Table 4.3. Note that the summary

quality is better when it is closer to the agreement value. Agreement is low for this evaluation, as

was the case with previous evaluations in Chapter 3, because the number of features per entity was

relatively high (on average 44 features per entity). This evaluation confirmed several of our claims

about the approach in creating high summary quality:

4.3. DISCUSSION 68

1. Our intuition for ranking datatype property features by giving precedence to popular entity

mentions in the value instead of getting any other entity mention or the whole literal of the

value is effective.

2. Grouping features based on types, including the generated semantic types for datatype property

values is appropriate.

3. Ranking facets in selecting faceted entity summaries is effective.

We further conducted a paired t-test to confirm the significance of the FACES-E’s mean summary

quality improvements over RELINM. For k = 5 and k = 10, p values for FACES against RELINM

are 8.24E-11 and 9.42E-12. When p values are less than 0.05, the results are statistically significant.

According to results shown in Table 4.3 and the paired t-test, FACES-E performed better and

benefited from datatype property typing.

4.3 Discussion

Our typing algorithm enabled FACES-E (to overcome a limitation of FACES) to process both types

of properties, thereby improving coverage. Likewise, typing for datatype properties can facilitate a

wide range of data processing applications. Property alignment [Gunaratna et al. 2013] is a use case

where similarly typed property values can be used to limit the properties analyzed for equivalence

and relatedness.

In the first evaluation, our algorithm showed MP and AMP values of 0.82 and 0.88 compared

to 0.48 and 0.58, respectively of the baseline. Furthermore, our algorithm showed good coverage.

Getting both MP and AMP values to a relatively high level is desirable for faceted entity summaries.

This is because when the algorithm can generate a correct type most of the time, also with high pre-

cision, it helps to group semantically similar features together. This, in turn, facilitates the creation

of high quality, “diversified” entity summaries evidenced by the second evaluation in Section 4.2.5.

4.3. DISCUSSION 69

However, we also note that datatype properties in our entity sample have labeling and noisy prop-

erties (due to incorrect or missing details) which is common occurrence in real-world datasets on

the Web. We manually filtered such labeling properties; however, this can be a challenging and

important problem to solve in the future.

It is possible to use the meaning of the property names and word sequence relationships of values

for type generation. For this, a machine learning model similar to Conditional Random Fields

(CRF) could be utilized whereas now, focus term detection drives the type computation. This can

facilitate predicting whether a value can be typed or not and filtering out noisy and labeling property

values. The absence of matching entities in DBpedia can stymie the generation of type information.

These are common dataset quality and completeness issues orthogonal to our problem. For missing

information, we can: (1) use type inferencing approaches [Paulheim and Bizer 2013] to generate

missing types and (2) use a comprehensive set of ontology classes and entities (e.g., from LOD) in

our approach.

Our approach does not generate “semantic types” for numeric and date value properties, and

challenges exist for measuring their popularity in the dataset for ranking. These properties will

be investigated in the future for grouping and ranking in faceted entity summary generation. Fur-

thermore, a formal model/approach needs to be adapted for RDF semantics to encapsulate type

generations for datatype properties and then they can be encoded in the datasets similar to object

properties whereas now, we keep the computed types for literals as additional information outside

the dataset.

Limitations

The type computation for literals is limited for properly formatted short string values. It cannot

identify types for values containing dates and numerical values. This is mainly due to the approach’s

focus on processing values and not taking insights from processing properties. It cannot identify a

focus term for numerical values or dates. Further, the type computation depends on the focus term

4.4. CONCLUSION 70

identification and semantic similarity computation between ontology classes and the candidate type.

FACES-E extended FACES approach by ranking facets to create diversified summaries and selection

of features depends on this ranking. Further, FACES-E treats object and datatype properties

without any difference and hence noise in datatype properties directly transformed into the entity

summaries.

4.4 Conclusion

In this Chapter, we discussed an approach to adapt FACES approach that we introduced in Chap-

ter 3 to improve the coverage of summaries. That is, FACES, that handles features based on object

properties because datatype property values do not have ontology classes assigned to them as types,

and hence, could not be grouped into conceptually similar features. We extended FACES by propos-

ing a method to compute types for literals in RDF triples to deal with datatype properties. In other

words, we have investigated the problem of computing types for datatype property values. We gen-

erate types for a property value by: (1) exact and semantic matching of the focus term to class

labels, and (2) spotting entities related to the focus term and retrieving their types.

Our contributions in this work span over two significant problems: (1) enhancing datatype prop-

erty values with type metadata, and (2) proposing FACES-E, which extends FACES to generate

more comprehensive entity summaries using both types of properties. We evaluated both type gen-

eration and the extended entity summarization approach using the DBpedia encyclopedic dataset on

the Web and showed improvement over the state-of-the-art. Our novel typing algorithm for datatype

property values enhances data with additional semantics and, hence, is useful in applications beyond

entity summarization, such as property alignment, data integration, and dataset profiling.

We have discussed ways of creating entity summaries for single entities and in the next chapter,

we present an approach to compute summaries for multiple entities considering their relatedness.

5

Relatedness-based Multi-Entity

Summarization

The earlier chapters of this dissertation have discussed approaches for creating comprehensive single

entity summaries. These focus on summarizing an entity by giving precedence selecting the most

important features for distinctly identifying the entity. But summarizing a collection of entities by

showing related features (retrieved from a knowledge graph) for quick understanding of the entity

collection as a whole compared to individual entities in isolation is an important issue that is yet to

be resolved. Such a system can help users to: (i) understand documents when browsing by presenting

related features for entities and (ii) interact with related features and entities when searching and

browsing on the Web (e.g., Google search shows related entity collections). A solution to this

problem should maximize the similarity or relatedness of features about the entities as it presents

information about the entity collection in a cohesive manner. For example, Figure 5.1 shows an

example of such a summary creation for “Apple Computer” and “Steve Jobs”. For the entity Steve

Jobs, it shows more facts about computers than other topics because the majority of the entities

are talking about computers or entities related to computers. Further, it shows facts related to the

entire entity collection (e.g., selection of “California” for Steve Jobs). In other words, the summary

71

72

Within one month of the iPod nano and iTunes phone special event, Apple Computer

announced today another special event to be held on October 12. It is to be held at the

California Theater in downtown San Jose, California. The invitation reads, “One more thing

…”, the teasing tagline of Steve Jobs.

founders Steve_Jobs

product IPod

location California

industry Consumer_electronics
after Tim_Cook

knownFor Microcomputer_revolution

title Apple_Inc.

birthPlace California

Figure 5.1: Entity summaries maximizing relatedness between them for a news item from Wikinews

corpus.

generated for the entity Steve Jobs can vary from document to document depending on the other

entities that appear with it. Hence, this kind of a summary is dynamic and context dependent,

compared to single entity summaries which are context independent and static.

Diversity is an important characteristic that makes entity summaries comprehensive, subject to

the length constraints. Therefore, we should try to maximize the diversity of the features selected

for each entity summary; otherwise, they may contain redundant features at the expense of more

information. We propose RElatedness-based Multi-Entity Summarization (REMES) approach [Gu-

naratna et al. 2017] that facilitates the above-mentioned characteristics in creating entity summaries

for an entity collection. For this purpose, we adapt and map the Quadratic Multidimensional Knap-

sack Problem (QMKP), which is an extension of the Quadratic Knapsack Problem (QKP) [Gallo

et al. 1980] and utilize graph-based relatedness and semantic similarity measures. Specifically, we:

1. Generate entity summaries for a collection of entities by: (i) maximizing inter-entity related

features, (ii) maximizing intra-entity importance of features, and (iii) minimizing intra-entity

related features, by adapting QMKP. We modify a version of the Greedy Randomized Adap-

tive Search Procedures (GRASP) algorithm to compute entity summaries efficiently through

approximation.

2. Utilize graph-based and semantics-based relatedness measures to create entity summaries.

5.1. MULTI-ENTITY SUMMARIZATION 73

5.1 Multi-Entity Summarization

We first discuss the problem statement below. The formal definitions for entities, entity summaries,

and features are as described in earlier chapters.

5.1.1 Problem Statement and Description

Problem Statement: Given a collection of entities, we select features belonging to these enti-

ties maximizing inter-entity relatedness and intra-entity importance, and minimizing intra-entity

relatedness of features.

In this problem, we consider generating entity summaries for a collection of entities together by

selecting features to show the relatedness among the entities, and importance and diversity within

entities. That is, for a given entity collection {e1, e2, ...en} ⊆ E, and summary length constraints

k1, k2, ..kn, we want to generate corresponding entity summaries Summ(e1, k1), Summ(e2, k2), ...

Summ(en, kn) that has the maximum score according to the following objectives:

(Summ(e1, k1), .., Summ(en, kn)) = argmax
(Se1⊆FS(e1),..,Sen⊆FS(en))(

α ∗ (Σn
x=1Σfi∈Sex rank(fi))

− β ∗ (Σn
x=1Σfi,fj∈Sex r(fi, fj))

+ γ ∗ (Σn
i=1Σn

j=i+1Σfi∈SeiΣfj∈Sej r(fi, fj))
)

where |Sex| ≤ kx, kx ∈ Z+

(5.1)

The function r and rank compute relatedness and importance scores in the range [0,1], as dis-

cussed in Section 5.1.2.3. α, β, γ ∈ R+ are the weights (of the objectives) to be tuned. By maximizing

the similarity of features selected in different entity summaries, we provide connections between the

entities in their summary descriptions for the coherency of the content. We maximize the selection

of important features as well as related ones to make good quality summaries. Further, we avoid se-

lecting similar features for an entity to improve diversity and coverage of features given the summary

5.1. MULTI-ENTITY SUMMARIZATION 74

length constraints.

5.1.2 Approach

The problem described in Section 5.1.1 requires maximizing relatedness, importance, and diversity

of features (property-value pairs), controlled by the length of each entity summary for the entity

collection. First, let’s consider selecting features for an entity e from its feature set FS(e). Then we

discuss how to extend it to process an entity collection.

5.1.2.1 Selecting Features for an Entity

The features f ∈ FS(e) are numbered from 1 to |FS(e)|. First, the important features need to

be selected for the summary. For this, we utilize a tf-idf based ranking score for each feature f .

Second, the selection of similar features in the summary for an entity should be discouraged to

improve diversity (and hence improves coverage given the limit on summary length). To demote the

selection of features that are similar to the already selected ones for the summary from the entity,

we represent the relatedness between the features with the negation of the similarity value.

By defining a pairwise profit function for the features, we can map this problem as an instance

of the QKP [Gallo et al. 1980]. QKP is a generalization of the classical 0-1 knapsack problem where

it maximizes a quadratic objective function subject to linear constraints [Gallo et al. 1980; Yang

et al. 2013]. We define the profit pfi,fj as in Equation 5.2 for selecting the feature pair fi and fj for

the summary, where α, β ∈ R+. The function rank(fi) calculates the importance of the feature fi

and the function r(fi, fj) computes relatedness of the two features fi and fj . The intuition behind

giving a negative value for the relatedness score when the two features belong to the same entity is

to make their overall profit lower if they are highly related to each other. This discourages selection

of new features which are more related to the already selected features for the entity summary (that

leads to increased diversity).

5.1. MULTI-ENTITY SUMMARIZATION 75

pfi,fj =


α ∗ rank(fi), if i = j

−β ∗ r(fi, fj), if i 6= j

(5.2)

By introducing a series of binary variables xa for a = 1, 2, ..., |FS(e)| that indicate whether or not

the feature fa is selected in the optimal summary, the selection of Summ(e, k) for summary length

k maximizing the objectives outlined above can be defined as follows in terms of QKP formulation.

w(f) defines the weight of the feature f .

maximize Σ
|FS(e)|
a=1 Σ

|FS(e)|
b=a pfa,fb ∗ xa ∗ xb

where, Σ
|FS(e)|
a=1 w(fa) ∗ xa ≤ k, xa ∈ {0, 1} (5.3)

In the QKP, the algorithm optimizes selecting items that maximizes profit computed between

items. In other words, it can be used to select features to the entity summary to get maximum profit

by analyzing pairwise profit of the selected features. When using both positive and negative weights

as shown in Equation 5.2, QKP is NP-Hard, that is, it does not have a polynomial-time algorithm

to generate solutions unless P = NP [Gallo et al. 1980]. Therefore, an approximation algorithm like

GRASP can be used to compute a solution.

5.1.2.2 Selecting Features for Multiple Entities

The mapping of QKP above refers to creating entity summaries for individual entities. An extension

of this to handle multiple entities with the addition of maximizing inter-entity relatedness of features

is what we propose in our problem. To achieve this objective, we consider mapping this problem

to an instance of QKP with multiple constraints, namely,s Quadratic Multidimensional Knapsack

Problem (QMKP). Given a collection of entities e1, e2, .., en, features numbered fi,1 to fi,|FS(ei)|

∈ FS(ei), and random variables xi,a for i = 1, 2, ..., n and a = 1, 2, ..., |FS(ei)| to denote whether or

not a feature fi,a is selected for the best possible summary, the optimization goals can be formalized

as follows.

5.1. MULTI-ENTITY SUMMARIZATION 76

maximize Σn
i=1Σn

j=iΣ
|FS(ei)|
a=1 Σ

|FS(ej)|
b=1 pfi,a,fj,b ∗ xi,a ∗ xj,b

where, Σ
|FS(ei)|
a=1 w(fi,a) ∗ xi,a ≤ ki, xi,a ∈ {0, 1} (5.4)

ki is the capacity of knapsack belonging to entity ei. w(fi,a) is the weight of the ath feature of

ei. Note that we have n constraints to satisfy (a knapsack for each entity).

In extending QKP, we adapted a memory-based GRASP [Yang et al. 2013] approach, to simply

run with multiple constraints. The algorithm runs through several iterations, and in each iteration,

it generates a random solution first based on a greedy ranking function and sampling from the

candidate item set. The original GRASP algorithm proposes a greedy ranking function [Yang et al.

2013] and we modify it to bias the selection of features to also consider future candidate selection.

Given the already selected feature set S and candidate feature f , the modified greedy ranking

function Gr(S, f) in the construction phase of the GRASP algorithm is as shown in Equation 5.5.

The function w gives weight of each feature and τ, φ ∈ [0,1]. The component related to τ considers the

current feature against already selected items, and the component related to φ makes the algorithm

to consider unselected items in scoring the current feature, making the initial selection of features

in the algorithm less random.

Gr(S, f) =
Σi∈SΣj∈S,j≤i pi,j + τΣx∈S px,f + φΣx/∈S,x 6=j px,f + pf,f

Σy∈S∪{f}w(y)
(5.5)

Then, in the local search phase, the memory-based GRASP algorithm tries to improve the solu-

tion by further maximizing the total profit by swapping selected items with items from the unselected

item list. The total profit of the selected items in the summary is calculated by Σi∈SΣj∈S,j≤i pi,j .

Since we have more than one entity to consider in the optimization approach, the profit compu-

tation is updated to reflect this need as shown in Equation 5.6 below. In the equation, α, β, γ > 0

and are chosen empirically (tuned). The diagonal of the profit matrix contains the ranking scores

(signifying the importance of each feature) and non-diagonal entries contain pairwise relatedness of

5.1. MULTI-ENTITY SUMMARIZATION 77

features. We make profits negative for feature pairs belonging to the same entity so that highly

similar feature pairs will not be selected for the same entity.

pfi,a,fj,b =



α ∗ rank(fi,a), if i = j and a = b

−β ∗ r(fi,a, fj,b), if i = j and a 6= b

γ ∗ r(fi,a, fj,b), if i 6= j

(5.6)

5.1.2.3 Importance, Relatedness and Diversity

Note that we want diverse features to be selected in each entity summary and related features

among entities. Further, we do not want arbitrary features to be selected for the summaries but be

influenced by their importance. We try to combine these characteristics as shown in Equation 5.6.

Importance of a Feature

The diagonal of the profit matrix has the importance score for each feature f calculated by rank(f)

as shown in Equation 5.9. We rank features based on how informative the property-value pairs are

and how frequent the values are [Cheng et al. 2011; Gunaratna et al. 2015]. We try to achieve a

trade-off between the two measures similar to tf-idf score in Information Retrieval. Inf(f) computes

the inverse logarithmic feature frequency as shown in Equation 5.7 where N is the total number of

entities in the knowledge graph G. The popularity (i.e., frequency) of value v of the feature f is

computed by Equation 5.8. Prop(f) and V al(f) are two functions that return the property and the

value of the feature f . Function rank(f) facilitates selection of important features in the GRASP

based summary generation as it can add higher profits for some features which are considered to

be important in addition to the pairwise feature profit computed based on relatedness. Note that

Equations 5.7, 5.8, and 5.9 are the ones we used in FACES and FACES-E approaches in Chapter 3

and Chapter 4.

5.1. MULTI-ENTITY SUMMARIZATION 78

Inf(f) = log(
N

|{e|f ∈ FS(e)}|
) (5.7)

Po(v) = log|{triple t|∃ e, f : t “appears in” G and t ≡ (e Prop(f) V al(f)) and V al(f) = v}| (5.8)

rank(f) = Inf(f) ∗ Po(V al(f)) (5.9)

Relatedness of a Feature Pair

We calculate the relatedness of a feature pair by utilizing two measures. First, we employ semantics

based measurement to analyze the relatedness between two properties by computing the overlap of

terms that represent the two properties. Second, we utilize a graph and co-occurrence based measure

to compute relatedness between two values (entities), specifically, using a vector space model similar

to word embedding for graphs.

For the semantics based relatedness measure, we process the property of each feature, with the

help of a lexical database, namely WordNet. For a given feature f , we get its property name (label

of the property URL) and retrieve hypernyms from the lexical database. We also pre-process them

(e.g., remove camel-case and stop words). Then we combine all the extracted terms and original

terms for property label of the feature f into a set Sf . Then the semantics based relatedness

SemRelp(fi, fj) of the two features fi, fj is computed by getting the Jaccard co-efficient of the

two sets of the features Sfi and Sfj as shown in Equation 5.10. We chose to get hypernyms from

the lexical database instead of synonyms or hyponyms because we need to compute the relatedness

instead of strong similarity.

SemRelp(fi, fj) =
|Sfi ∩ Sfj |
|Sfi ∪ Sfj |

(5.10)

We consider a co-occurrence based relatedness to be computed between values of the features.

5.1. MULTI-ENTITY SUMMARIZATION 79

Similar to word embedding models like Word2Vec, we utilize a graph based model called RDF2Vec [Ris-

toski and Paulheim 2016] for this purpose. The model was developed using path based co-occurrence

and showed promising results in data mining and similarity computation applications [Ristoski and

Paulheim 2016]. We employ a pre-trained model on DBpedia knowledge graph and compute cosine

similarity of any given two entities over their vector representation as shown in Equation 5.11. Given

two features fi,a and fj,b belonging to entities ei and ej and their corresponding vector represen-

tation of their values (V al(fi,a) and V al(fj,b)) shown as ~V al(fi,a) and ~V al(fj,b) , respectively, and

the relatedness measure r(fi,a, fj,b) is defined as in Equation 5.12.

GraphRelv(~V al(fi,a), ~V al(fj,b)) =
~V alfi,a · ~V alfj,b
| ~V alfi,a|| ~V alfj,b|

(5.11)

r(fi,a, fj,b) =
SemRelp(fi,a, fj,b) +GraphRelv(~V al(fi,a), ~V al(fj,b))

2
(5.12)

Improving Feature Diversity in Entities

We implemented the GRASP algorithm presented by [Yang et al. 2013] and adapted it to fit our

problem solution. The GRASP approach constructs random solutions and then improves upon them

in the local search phase, in several iterations and returns the best result found so far based on the

total profit. Recall that one of our objectives in this problem is to improve diversity of features

selected for each entity. In order to achieve that, in addition to the introduction of negative profits,

we make changes in the candidate feature selection step. The GRASP approach keeps a candidate

set and remaining set of features for the collection of entities. The remaining set contains all the

unselected features from the entity collection and candidate set is a random sample of this set.

By introducing a threshold value η, we filter out features belonging to the remaining set where

their maximum pairwise profit value with already selected feature is greater than η. That is, for a

candidate feature f and the set of selected features S, we filter out f if max(r(f, fi∈S)) > η where

f ,fi ∈ FS(e). With this modification, we are able to improve diversity in the results for each entity

5.2. EVALUATION 80

by forcing the combinatorial optimization algorithm to not access similar features that have already

been selected.

5.2 Evaluation

We discuss the details of our experimental settings and results below.

5.2.1 Implementation Details and Algorithm Settings

In our implementation of memory-based GRASP algorithm, we set γ, β, λ, σ to 1, 3, 5, and 5,

respectively. These values are suggestions from the authors of GRASP. We normalized profit values

by dividing them using the maximum profit. We also added average similarity between the value of

each feature and the entity collection to the diagonal of the profit matrix (to improve relatedness).

In the greedy ranking function shown in Equation 5.5, we set τ = 1 and φ = 0.5. In the profit

matrix, we used α = 2, β = 1, and γ = 1.5. We set the threshold η = 0.45. The parameter values

in the greedy ranking function and profit computation needed to be tuned for this task. We used a

separate document sample to determine these values. Further, in this implementation, we consider

feature weights to be uniform and equal to 1. Therefore, the length of the summary for each entity

denotes the knapsack size for that entity. We used DBpedia (version 2016-04) encyclopedic dataset

as our knowledge graph to retrieve entity descriptions and ran the RDF2Vec model on it. For the

semantic relatedness measure, we used the WordNet lexical database.

5.2
.

E
V
A
L
U
A
T
IO

N
81

Question

Wikinews AQUAINT

Response: Mean (SD) F(2,357) LSD post-hoc Response: Mean (SD) F(2,147) LSD post-hoc

REMES FACES RELIN (p-value) (p <0.05) REMES FACES RELIN (p-value) (p <0.05)

Q1: Summaries assisted me to get some relationships

between the entities in the entity collection.

3.98 3.66 2.78 35.798 REMES >FACES

>RELIN

4.50 3.92 3.06 30.866 REMES >FACES

>RELIN(1.16) (1.08) (1.18) (6.772e-15) (0.65) (0.92) (1.13) (6.427e-12)

Q2: The facts in each summary are diverse.
4.12 3.93 3.79 2.747

REMES >RELIN
4.26 3.98 3.22 11.879 REMES, FACES

>RELIN(0.93) (1.08) (1.28) (6.500e-2) (1.01) (0.89) (1.36) (1.700e-5)

Q3: The summaries helped me to better understand

the document.

3.69 3.38 2.84 17.868 REMES >FACES

>RELIN

4.36 3.76 2.92 25.927 REMES >FACES

>RELIN(0.71) (1.41) (0.71) (4.022e-8) (0.60) (0.96) (1.32) (2.267e-10)

Q4: The summaries provide me an overview of the

entire entity collection.

3.78 3.48 2.91 19.148 REMES >FACES

>RELIN

4.26 3.74 2.88 30.123 REMES >FACES

>RELIN(1.07) (1.07) (1.20) (1.260e-8) (0.63) (0.80) (1.19) (1.086e-11)

Q5: I like the summaries generated.
4.05 3.72 3.18 22.586 REMES >FACES

>RELIN

4.22 3.32 2.54 35.611 REMES >FACES

>RELIN(0.89) (0.91) (1.20) (5.805e-10) (0.68) (1.04) (1.20) (2.447e-13)

Table 5.1: Evaluating system summaries using questionnaire.

5.2. EVALUATION 82

System
UCI UMASS

Wikinews AQUAINT Wikinews AQUAINT

REMES 0.064 0.056 -0.301 -0.257

FACES -0.083 -0.259 -0.971 -0.428

RELIN -0.221 -0.148 -0.984 -0.589

Table 5.2: Average coherency of different models

5.2.2 Datasets and Evaluation Setting

We evaluated REMES using qualitative and quantitative measures. For the qualitative evaluation,

we requested a set of judges to rank systems on the Likert scale 1 1 to 5 (1 for strongly disagree

and 5 for strongly agree) for a given set of questions. For the quantitative evaluation, we evaluate

the proposed approach against other systems for their level of relatedness. We use two document

samples taken from two popular entity linking benchmark datasets: (i) Wikinews 2 (20 documents)

and (ii) AQUAINT 3 (10 documents). We use object properties associated with the entities.

5.2.2.1 Qualitative Evaluation

We compared REMES with two state-of-the-art stand-alone entity summarization systems: FACES

and RELIN. The goal of this evaluation is to measure how successful is each system in selecting

summaries for each entity in a collection of entities to maximize inter-entity relatedness and intra-

entity diversity and importance of features. We constructed 5 questions to evaluate on a Likert

scale (1 strongly disagree and 5 strongly agree). We asked 13 judges to answer these questions for

each dataset and each question had at least 5 different judges. The evaluation contains 850 question

instances scored by the judges. The questions and the results are shown in Table 5.1. The proposed

multi-entity summarization approach achieved higher mean scores (on the Likert scale) for all the

questions used in the evaluation. We measured its statistical significance by first performing one-way

1https://en.wikipedia.org/wiki/Likert_scale, accessed 04/10/2017
2http://www.newsreader-project.eu/results/data/wikinews, accessed 04/10/2017
3http://www.nzdl.org/wikification/docs.html, accessed 04/10/2017

5.2. EVALUATION 83

ANOVA and then further investigating using Least Significant Difference (LSD) post-hoc analysis.

5.2.2.2 Quantitative Evaluation

To further evaluate the robustness of the proposed REMES model, we processed the summaries

generated by the three systems and compared how effective they were in picking related features

between entities. To measure the relatedness between features in the generated summaries, we

measured semantic similarity of the entities (by processing their labels in the graph) in those features.

In particular, we assessed the relatedness of these entities by employing two state-of-the-art NLP

semantic similarity techniques, namely, UCI [Newman et al. 2010] and UMass [Mimno et al. 2011].

UCI was measured by a sliding window and the Point-wise Mutual Information (PMI) of all entity

pairs. The entity co-occurrence counts were calculated utilizing a sliding window with the size 10.

For every value pair the PMI is calculated on Wikipedia articles as shown in Equation 5.13.

UCI(Wi,Wj) = log
p(Wi,Wj) + ε

p(Wi)p(Wj)
(5.13)

where Wi,Wj are the labels of the entities ei, ej and the word probabilities (p(W)) are calculated

by counting word co-occurrence in a sliding window over Wikipedia. On the other hand, UMass is

measured based on document co-occurrence counts as shown in Equation 5.14.

UMass(Wi,Wj) = log
D(Wi,Wj) + ε

D(Wi)
(5.14)

where D(Wi,Wj) counts the number of documents containing both Wi and Wj words and D(Wi)

counts the ones containing Wi, and ε is the smoothing factor. We used Palmetto 4 for measuring the

UMass and UCI measures (using Wikipedia as the external corpus). Table 5.2 shows the semantic

relatedness of the generated summaries for the three different systems based on the above metrics.

5.2. EVALUATION 84

Dmitry Medvedev

dbo:title-dbr:President_of_Russia

dbo:otherParty-dbr:Communist_Party_of_the_Soviet_Union

dbo:birthPlace-dbr:Saint_Petersburg

dbo:predecessor-dbr:Valadimir_Putin

Dmitry Medvedev

dbo:title-dbr:President_of_Russia

dbo:otherParty-dbr:Independent_(politician)

dbo:almaMater-dbr:Saint_Petersburg_State_University

dbo:deputy-dbr:Igor_Shuvalov

Russia

dbo:establishedEvent-dbr:Russian_Empire

dbo:leaderName-dbr:Dmitry_Medvedev

dbo:currency-dbr:Russian_ruble

dbo:capitol-dbr:Moscow

Russia

dbo:establishedEvent-dbr:Russian_Empire

dbo:leaderName-dbr:Vladimir_Putin

dbo:southwest-dbr:Black_Sea

dbo:capitol-dbr:Moscow

Summaries generated by REMES

Summaries generated by FACES

Figure 5.2: Example entity summaries for two entities

5.2.3 Discussion

In the qualitative evaluation, REMES ranked higher than the other two systems for both the datasets,

except for question 2, where p-value (0.18 for Wikinews and 0.20 for AQUAINT) was not significant

enough to make a decision between multi-entity system and FACES. This is not totally unexpected

because FACES system has shown superior capabilities in achieving diversity in generating entity

summaries (by using a comprehensive hierarchical clustering approach). For all other questions,

REMES outperformed the others and achieves higher mean scores, confirming its ability to generate

summaries while maximizing inter-entity relatedness and intra-entity importance (and comparable

to FACES in diversity). Figure 5.2 shows summaries generated for two entities using the REMES

and the FACES systems. While REMES tries to make a connection between the entities (by selecting

the leader for Russia), FACES could not get such relatedness. This is mainly because FACES cannot

and does not consider other entities in the entity collection.

In the quantitative evaluation, we further confirmed that REMES generates summaries that

maximizes relatedness of features for entity collections. We utilized an external knowledge source

(Wikipedia) to capture relatedness of features selected for the summaries. The higher the semantic

similarity score, the more related features are in the summaries generated for the entity groups.

Clearly, the summaries generated by the proposed approach are more related according to both

4http://aksw.org/Projects/Palmetto.html, accessed 04/10/2017

5.3. CONCLUSION 85

measures that further confirms the achievement of our objective of creating relatedness based entity

summaries for entity collections.

Finally, analyzing user feedback on the generated summaries, majority of the users (about 80%)

mentioned that the multi-entity approach has the capability to pick related features in the summaries.

We plan to further investigate how to select appropriate properties to improve the summaries.

Limitations

REMES approach depends on semantic relatedness measures (using RDF2Vec and hypernym-based

computations) and optimization steps performed by GRASP algorithm. GRASP is an approxima-

tion to the optimal solution. The success of GRASP can be further evaluated and measured for

improvements. Further, REMES only processed entity descriptions that come from the knowledge

graph and no processing is done on the textual content surrounding the entities.

5.3 Conclusion

Summarizing a collection of entities is challenging since it involves processing all the entities in

the collection simultaneously and in a coherent way. We proposed REMES approach to select re-

lated features among entities while keeping the diversity and saliency of features within each entity.

REMES utilizes a graph-based RDF2Vec model to compute relatedness of two entities and semantic

expansion based measure to compute relatedness of two properties. Further, we adapted a QMKP

problem instance to match our task and used an implementation of a memory-based optimization

algorithm called GRASP. The REMES approach has been evaluated against two state-of-the-art

stand-alone entity summarization systems in two different settings: qualitative and quantitative.

Extensive set of experiments using statistical tests (one-way ANOVA and LSD post-hoc) on two

different datasets confirmed that REMES outperformed the others in generating high quality sum-

maries for the collections of entities.

6

Enrichment and Usage of

Structured Knowledge - two

use-cases

The main focus of this dissertation is on entity summarization approaches that use structured

knowledge. In this chapter, we discuss two illustrative applications of enriching and using struc-

tured knowledge: (i) identify equivalent properties between datasets (schema level) and (ii) use the

structured knowledge to rank documents.

The two applications we discuss in this chapter can be used to support summarization. Identifica-

tion of equivalent properties between linked datasets supports data integration. This can be used to

integrate triples related to an entity scattered among datasets and then generate entity summaries.

The second application in this chapter retrieves related documents. Documents are represented

using extracted sets of triples. By using methods we discuss in this work, we can retrieve related

sets of triples from a knowledge graph (representing a document corpus). Then we can summarize

the retrieved triples (we have to adapt techniques presented earlier in this dissertation as they are

86

6.1. IDENTIFYING EQUIVALENT PROPERTIES BETWEEN LINKED DATASETS 87

for handling features) to represent the original set of triples for efficient processing.

6.1 Identifying Equivalent Properties between Linked Datasets

We propose an approach to align properties between two different linked datasets [Gunaratna et al.

2013]. Our approach relies on utilizing the entity co-reference relationships (ECR) such as those

formalized using owl:sameAs and skos:exactMatch. Our approach analyzes occurrences of equivalent

subject and object values across datasets to align properties, e.g., given two matching subject and

object pairs that are connected by ECR links, we check whether the associated property names

have the potential to be equivalent. This is done in a robust manner by analyzing the aggregated

statistical results related to matching subject-object pairs for a given pair of properties. Our work

uses property extensions to glean equivalent properties that generalizes and improves upon the state-

of-the-art. Using these results, we show how existing entity co-reference links between resources in

LOD cloud can be used to align properties. The main contributions of this work are as follows:

• It introduces an efficient approach that utilizes property extensions and resource inter-links for

property alignment, and

• It uses the notion of Statistical Equivalence to approximate owl:equivalentProperty.

6.1.1 Related Work

Property alignment, which is crucial for data integration tasks, has been addressed less often com-

pared to concept and instance alignment. In contrast with instance and concept alignment [Shvaiko

and Euzenat 2013], properties exhibit complex structure and meaning. Current techniques used

for property alignment (including object) fall into three categories: (i) Syntactic/ dictionary-based,

where predicate similarity is garnered via string matching or using WordNet, (ii) Schema dependent,

and (iii) Schema independent, where instance level information is utilized. Some use a mix of these

techniques and analyze properties of property alignment [Cheatham 2014].

6.1. IDENTIFYING EQUIVALENT PROPERTIES BETWEEN LINKED DATASETS 88

Several efforts match data-type properties in ontologies [Nunes et al. 2013] [Tran et al. 2011].

[Nunes et al. 2013] utilized mutual information present at the instance level using genetic algorithms.

They discuss matching of one to many complex relationships in different ontologies, but are limited to

data-type properties. [Tran et al. 2011] discuss a cluster based similarity aggregation methodology

for ontology matching where they focus on four different similarity measures to align properties.

They calculate string, WordNet, profile, and instance similarities based on the domains and ranges

of the properties. Even though [Tran et al. 2011] try to match object properties, they admit that the

results are not strong enough to distinguish matching and non-matching property names. [Sleeman

et al. 2012] incorporate a density estimation approach using Kernel Density Estimation (KDE)

to map opaque properties (properties conveying the same meaning irrespective of their names) in

ontologies. However, they transform values into numeric form to be compatible with KDE. This

transformation is not easy in the LOD context where each instance contains many triples.

[Zhao and Ichise 2012] presented a graph based ontology analysis complementing their previous

work related to building a mid-level ontology utilizing WordNet and string based similarity measures

to group properties. The approach is not suitable for identifying equivalent properties since it groups

any two related properties (using object value similarity) and does not take into account the effect

of coincidental matches in initial grouping. SLINT [Nguyen et al. 2012] is an instance matching

system that uses an IR based heuristic to calculate object values overlap. Both these approaches

are coarse grained and hence not suitable for identifying equivalent properties as they aggregate

properties on the overlap (not on the individual subject pairs): e.g., they can confuse conceptually

different predicates “placeOfBirth” and “placeOfDeath”. These approaches are also different from

ours in the sense that they use only object values and their overlap whereas we strictly try to

match the property extensions minimizing false positives. TripleRank’s effort [Franz et al. 2009]

in faceted browsing computes latent predicate similarity (i.e., similar properties within a dataset)

indirectly as a byproduct of Singular Value Decomposition (SVD) and it is hard to verbalize the

results in terms of extensions. Furthermore, it does not provide an evaluation on intra/inter dataset

6.1. IDENTIFYING EQUIVALENT PROPERTIES BETWEEN LINKED DATASETS 89

property alignment in terms of precision and recall. The analysis of owl:sameAs networks and their

implications for detecting schema-level inconsistencies and ontology alignment are discussed in [Ding

et al. 2010]. Some of the alignment techniques and applications have used these networks showing

their effectiveness in practice [Parundekar et al. 2012] [Zhao and Ichise 2012]. We also use a similar

link traversal network model in our approach to match property extensions.

6.1.2 Approach

Property alignment is a non-trivial research problem in the Semantic Web domain. Progress on this

problem can lead to significant advancements in data integration tasks. The objective of property

alignment is to identify equivalent or sub-property relationships between a property pair P1 and

P2, which may be in the same or different datasets. Since property names in different datasets

have independent origin and relationships capture complex meaning in a triple [Sheth et al. 2004],

calculating string similarity or synonym based measurements on property names alone does not

suffice. To solve this problem, our “extensional” approach determines related properties (P) by

finding similar triple patterns across datasets by matching subject (S) and object (O) values in

triples of the form (SP1O) and (SP2O).

6.1.2.1 Property Alignment between Datasets

OWL [Dean et al. 2004] defines the concept of equivalent property (owl: equivalentProperty) as two

properties having the same extension. For example, if property P is defined by triples {aPb, cPd, ePf}

and property Q is defined by triples { a Q b, c Q d, e Q f }, then they are equivalent properties

because they have the same extension {{a, b}, {c, d}, {e, f}}. Since it is hard to expect exactly

the same property extensions in real datasets, we approximate it by a significant overlap in match-

ing subject-object pairs. For this purpose, we define statistical equivalence of properties on linked

datasets. For example, if property P is defined by triples { a P b, c P d, e P f } and property Q is

defined by triples { a Q b, c Q d, g Q h }, then property extensions are not the same, but P and

6.1. IDENTIFYING EQUIVALENT PROPERTIES BETWEEN LINKED DATASETS 90

Q have matching subject and object values two times out of three, providing statistical evidence in

support of their equivalence. When we utilize evidence for extension matching, we need to overcome

the potential problem of incorrect matches in complex data representation contexts.

We first determine the ‘relatedness’ between a property pair to decide a match, which also

reduces the search space. Note that while SKOS [Miles and Bechhofer 2008] is a formal specification

of concept relatedness in ontologies, there is no such specification for properties. Therefore, we now

present some notions to help represent property alignment on linked data. We first define the notion

of candidate match between two properties.

The following statement is true for all the definitions in this section. Let S1P1O1 and S2P2O2

be two triples in two different datasets D1 and D2, respectively, representing relations P1(S1, O1)

and P2(S2, O2). ECR are the entity co-reference links described earlier.

Definition 7 candidate match Let S1P1O1 and S2P2O2 be two triples. The two properties P1 and

P2 are a candidate match iff S1
ECR*←−−→ S2 and O1

ECR*←−−→ O2. We say two instances are connected by

an ECR∗ link if there is a link path between the instances using ECR links (where, ∗ is the Kleene

star notation).

Candidate matches can provide supportive evidence for property alignment. But there can be

coincidental (spurious) matching of properties. Consider the following two triples in the datasets

DBpedia(d) and Freebase(f):

d:Arthur Purdy Stout d:place of birth d:New York City

f:Arthur Purdy Stout f:place of death f:New York City

Arthur Purdy Stout is a person (in fact, a surgeon and pathologist in real life) who lived in

New York City. Given that d:Arthur Purdy Stout is the same as f:Arthur Purdy Stout and d:New

York City is the same as f:New York City, d:place of birth and f:place of death properties are a

candidate match according to the definition. But clearly these two properties should not be treated

6.1. IDENTIFYING EQUIVALENT PROPERTIES BETWEEN LINKED DATASETS 91

as equivalent because they have different intentional semantics. Therefore, this coincidental match

is not an equivalent match.

To minimize mis-identification of coincidental matches as equivalent (ideally eliminating them),

our approach aggregates additional evidence in support of a statistical match, to approximate equiva-

lent match (defined formally using extensions). Therefore, we keep track of key statistical measures

along with the candidate matches to compute statistical equivalence. For a candidate matching

property pair (P1,P2), Match Count µ(P1,P2) and Co-appearance Count λ(P1,P2) can be defined as

follows.

Match Count µ(P1,P2) is the number of triple pairs for P1 and P2 that participate in candidate

matches. That is,

µ(P1, P2) = |{S1P1O1 ∈ D1 | ∃ S2P2O2 ∈ D2 ∧ S1
ECR*←−−→ S2 ∧ O1

ECR*←−−→ O2}| (6.1)

Co-appearance Count λ(P1,P2) is the number of triple pairs for P1 and P2 that have matching

subjects. That is,

λ(P1, P2) = |{S1P1O1 ∈ D1 | ∃ S2P2O2 ∈ D2 ∧ S1
ECR*←−−→ S2}| (6.2)

Statistical equivalence in this work is measured by analyzing candidate matches over co-appearances

of a property pair, which provides statistical evidence, i.e., it will have many matching subject-object

pairs over common subjects. Therefore, the number of matching subject-object pairs in the property

extensions and co-appearances of a property pair directly influence the decision function F (defined

below) for selection (captured using a confidence threshold α). Also, a property pair must co-appear

enough times (supporting evidence) to be picked as a match, to overcome coincidental matches, by

achieving a sufficient match count µ. Therefore, this minimum number of match count µ should be

greater than a constant k. This constant k filters out many incorrect random candidate matches.

Now, statistically equivalent property pairs can be defined as follows.

6.1. IDENTIFYING EQUIVALENT PROPERTIES BETWEEN LINKED DATASETS 92

I1 I2

I2

matching resources

owl:sameAs

P1=d1:doctoralStudent

P2=d2:education.

academic.advisees

Dataset 2 Dataset 1

property P1 and property P2 are a candidate match

d2:theodore_harold_maiman

I1=d1:Willis_Lamb I2 =d2:willis_lamb

I1

I1

d1:Theodore_Maiman

triple 1

triple 2

triple 3

triple 4

triple 5

Step 1

S
te

p
 2

S
tep

 2

Step 3

Figure 6.1: Process of Candidate Matching. Matching resources are in the same color/pattern.

Definition 8 statistically equivalent properties The pair of properties P1 and P2 are statisti-

cally equivalent to degree (α, k) iff

F =
µ(P1, P2)

λ(P1, P2)
≥ α and µ(P1, P2) ≥ k, for 0 < α ≤ 1, k > 1 (6.3)

Note that, a list of statistically equivalent properties can, strictly speaking, consist of equivalent

properties, sub-properties and incorrectly mapped coincidental matches.

6.1.2.2 Resource Matching and Generating Property Alignments

Our algorithm is based on exploiting entity co-reference links that exist between instances in linked

data for candidate matching of property pairs. This process is further illustrated in Figure 6.1 by

matching an instance I1 (Willis Lamb) with I2 using owl:sameAs as the co-reference (ECR) link.

This is achieved in three steps. In Step 1, the corresponding instance for I1 is identified as I2 by

following an owl:sameAs link from I1 to I2. In Step 2, the subject instances are expanded using

triples they consist of, i.e., dataset 1 has three triples for I1 as the subject and dataset 2 has two

6.1. IDENTIFYING EQUIVALENT PROPERTIES BETWEEN LINKED DATASETS 93

P1 = doctoralStudent

P2 = education.

academic.advisees

owl:sameAs owl:sameAs

owl:sameAs

Dataset1 = DBpedia(d) Dataset2 = Freebase(f)

resources set S1

d:Theodore_Harold_Maiman

d:Theodore_H._Maiman

d:Theodore_Maiman

d:Ted_Maiman

d:Theodore_Maiman

d:Willis_Lamb f:Willis_Lamb

d:Theodore_Maiman f:theodore_harold_maiman

f:theodore_harold_maiman

resources set S2

Figure 6.2: Property matching with overlapping sets of resources

triples for I2 as the subject. In Step 3, since all subject values are matching for the triples of I1 and

I2, finding two matching object values leads to a candidate match, i.e., in triples 2 and 4, object

values can be matched by following an owl:sameAs link between them. Therefore both subject

and object values match for triples 2 and 4 (also an extension match) leading to a candidate match

for doctoralStudent and education.academic.advisees properties. This process is further outlined in

Algorithm 3.

Comparison of the object values of triples is computed by checking for an overlap of ECR links,

which includes checking for ECR∗. This is further illustrated in Figure 6.2 with only direct linking

between them (one level deep path) for clarity. Further, this overlap based computation allows us

to have link chains (ECR∗) to arrive (converge) at a decision. The process of candidate matching

is presented in Algorithm 3 where the input to the procedure is a set X of subject instances of

the first dataset and namespace identifier of the second dataset. The GetCorsEntity procedure

returns the relevant corresponding entity in the second dataset for a given subject instance in the

first dataset (by following an ECR link and namespace identifier). The ExtractPO procedure is

for extracting all the property-object pairs for a given subject instance and returns a map data

structure. The map data structure has object values stored for each property. The GetECRLinks

procedure returns all the available corresponding entities without considering any namespaces. If two

6.1. IDENTIFYING EQUIVALENT PROPERTIES BETWEEN LINKED DATASETS 94

Algorithm 3 GenerateCandidateMatches(X, namespace)

Require: X, namespace

Ensure: λ, µ for each property pair

1: for i = 1→ Size(X) do

2: subject S1← X[i]

3: subject S2← GetCorsEntity(subjectS1, namespace)

4: map l1← ExtractPO(S1)

5: map l2← ExtractPO(S2)

6: for each property p ∈ l1 do

7: object o1← l1(p)

8: Set o1 ecr ← GetECRLinks(o1)

9: for each property q ∈ l2 do

10: if p exactmatch q then

11: p matches q

12: else

13: update λ(p, q)

14: object o2← l2(q)

15: Set o2 ecr ← GetECRLinks(o2)

16: isMatch←Match(o1 ecr, o2 ecr)

17: if isMatch then

18: update µ(p, q)

19: end if

20: end if

21: end for

22: end for

23: end for

6.1. IDENTIFYING EQUIVALENT PROPERTIES BETWEEN LINKED DATASETS 95

D1:Dataset 1 D2:Dataset 2
Matching

Subject Pairs

Matching

Object Pairs

S1 doctoralStudent O1 S1

|
 academic.advisees O1

|
 (S1 , S1

|
) (O1 , O1

|
)

S1 birth_place O2 S1

|
 place_of_birth O3 (S1 , S1

|
) ---

S2 doctoralStudent O4 S2

|
 influenced O4

|
 (S2 , S2

|
) (O4 , O4

|
)

S2 birth_place O5 S2

|
 place_of_birth O5

|
 (S2 , S2

|
) (O5 , O5

|
)

S2

|
 place_of_death O5

|
 (S2 , S2

|
) (O5 , O5

|
)

S3 doctoralStudent O6 S3

|
 academic.advisees O6

|
 (S3 , S3

|
) (O6 , O6

|
)

S3

|
 influenced O7 (S3 , S3

|
) ---

S3 birth_place O8 S3

|
 place_of_birth O8

|
 (S3 , S3

|
) (O8 , O8

|
)

Generated Candidate Matching Property Lists – Matches selected are in Boldface

[D1:doctoralStudent] [[D2:academic.advisees, 2:2] , [D2:influenced, 1:2]] list1

[D1:birth_place] [[D2:place_of_birth, 2:3] , [D2:place_of_death, 1:1]] list2

Property Pair MatchCount Co-appearanceCount

[D1:doctoralStudent, D2:academic.advisees] 2 2

[D1:birth_place, D2:place_of_birth] 2 3

Figure 6.3: Calculating MatchCount and Co-appearanceCount values

property names can be matched exactly (except namespaces), then they are considered as matched,

as outlined in line 11 of the algorithm. As Algorithm 3 is performed on a sample instance set taken

from dataset 1, candidate matches are found with µ and λ counts. Then applying function F with

α and k in equation 6.3 for aggregated µ and λ for each property pair in the whole instance set

will yield statistically equivalent property pairs for the two datasets. Note that GetCorsEntity and

GetECRLinks procedures can be configured to use a specific ECR link or multiple types of ECR

links (like owl:sameAs, skos:exactMatch, etc).

Figure 6.3 shows an example for calculating µ and λ. In this example, the algorithm used α=0.5

and k=2 to decide on matches from each list of candidate matching pairs and eliminate coincidental

matches. Recall that α is the minimum fraction of matching triples over co-appearances and k is

the minimum number of matching triples required to be considered for equivalence. The need for k

together with α can be further explained using list1 & list2 in Figure 6.3, where “doctoralStudent”

matched to “influenced” and “birth place” matched to “place of death” satisfying α. The use of

k avoids such coincidental (incorrect) matches. It also illustrates the nature of our bootstrapping

6.1. IDENTIFYING EQUIVALENT PROPERTIES BETWEEN LINKED DATASETS 96

algorithm that decides on a matching property pair after analyzing the evidence from all matching

subject-object pairs of the property extensions.

Complexity Analysis

Let the average number of properties for an entity be x and average number of objects for a property

be j. Then, Algorithm 3 has to compare j∗j∗x∗x object value pairs for an entity pair. For n number

of subjects, it would be n∗j ∗j ∗x∗x. To extract property-object pairs, it requires 2∗n operations 1.

x and j are independent of n as number of properties per instance and number of object values per

property do not change on average for larger or smaller n. Since n > j and n > x, O(n∗ j2 ∗x2 +2n)

is n. The inherent parallel nature of Algorithm 3 allows us to adapt it to Map-Reduce paradigm to

improve efficiency.

Implementation Details

The algorithm is implemented using Java, Apache Hadoop and Jena framework for processing RDF

triples. Datasets are replicated locally using Virtuoso triple store except for Freebase dataset for

which we used their public APIs.

In this experiment, we mainly used owl:sameAs and skos: exactMatch links as ECR (owl:sameAs

was the dominant link of the two for the selected datasets). When searching for ECR links between

entities, we investigated one level deep paths in this experiment (see Figure 6.2) since it was sufficient

for the experimental datasets. But this can be extended further by examining more than one level

deep link paths (ECR∗) for enhanced coverage. We also used exact matching of rdfs:labels of the

two objects when comparing ECR links for object equivalence. This is used as an approximation

to ECR links for the comparison of object values (line 16 of Algorithm 3) to improve coverage in

absence of ECR links. This is because, we are looking for exact matching of labels for objects that

belong to the same entity in two datasets. It is a good approximation as the subject (entity) is

1If comparisons are not restricted this way to each subject, a naive algorithm would need n2 ∗ j2 ∗ x2 + 2n

comparisons.

6.1. IDENTIFYING EQUIVALENT PROPERTIES BETWEEN LINKED DATASETS 97

guaranteed to be the same, since only ECR links are used for subject matching. This approximation

also tries to compensate for sparseness of ECR links.

The process presented in Algorithm 3 requires a lot of comparisons and could grow for larger

instance sets. But the algorithm was easily adapted to Map-Reduce framework by distributing

subject instances among mappers. The specific implementation is explained below:

• Map phase

– Let the number of subject instances in dataset 1 (D1) be X and namespace of dataset 2

(D2) be ns. For each subject i ∈ X, start a mapper and call GenerateCandidateMatches(i,

ns) outlined in Algorithm 3.

– Each mapper outputs (key,value) pairs as (p:q, µ(p,q):λ(p,q)) to reducer, where property

p∈D1 and property q∈D2.

• Reducer phase

– Collects output from all mappers and aggregates µ(p,q) and λ(p,q) values for each key p:q.

The process can be parallelized since computation of one subject instance is independent of

the others. We implemented the algorithm in Hadoop Map-Reduce 1.0.3 framework and achieved

significant improvements in running time on a 14 node cluster (in fact, a speedup of 833% compared

to the desktop version on average). Moreover, we may achieve faster times when more resources are

available to parallelize.

When the algorithm is run for a sample set of instances starting from dataset D1, we can generate

candidate matches of property pairs. One property may be matched to many other properties

because of similar extensions, as explained in Section 6.1.2.1. After recording candidate matches,

each property in D1 has been mapped to a list of properties that are in dataset D2 with match

counts (see Figure 6.3). The most probable matching properties will have higher match counts in

the list and also have higher values for function F . We sort each list in descending order based on

6.1. IDENTIFYING EQUIVALENT PROPERTIES BETWEEN LINKED DATASETS 98

match counts and then test the first property pair from each sorted list to see whether it satisfies

threshold α and k for a match2. Applying these thresholds and sorting the lists remove many of

the coincidental matches and retain probable matches. The algorithm outputs these as statistically

equivalent. In this experiment, we were able to remove 76%, 87%, 67%, 83%, and 25% coincidental

matches respectively from Experiments 1 to 5 3. These statistics also reveal that simple object value

overlap or grouping mechanisms [Nguyen et al. 2012][Zhao and Ichise 2012] are not adequate for

finding equivalent properties in the LOD context.

6.1.3 Evaluation

The objective of this evaluation is to show that statistical equivalence of properties can success-

fully approximate owl:equivalentProperty in the LOD context and the developed algorithm performs

considerably better than the existing techniques used for property alignment, which includes string

similarity and external hierarchies (i.e., WordNet) based approaches. To prove our claim, we chose

DBpedia, Freebase4, LinkedMDB5, DBLP L3S6, and DBLP RKB Explorer7 datasets and extracted

sample instance sets for the following reasons. (1) They have more or less complete information

for instances. (2) They are well interlinked. (3) They have complex/opaque8 properties. (4) They

cover several dimensions of our evaluation as multi-domain to multi-domain, specific-domain to

multi-domain and specific-domain to specific-domain dataset property alignment.

Our property alignment results are presented in Table 6.1. We randomly selected 5000 subject

instances for each experiment, numbered 1 to 5 in Table 6.1. The experiments cover object properties

in person, film, and software domains between DBpedia and Freebase, films between DBpedia and

2Assuming both datasets do not have duplicate properties. In our experiments, DBpedia had duplicate properties.
3From 732, 355, 221, 255 and 4 generated candidate property pairs respectively.
4http://freebase.com/
5http://linkedmdb.org/
6http://dblp.l3s.de/d2r/
7http://dblp.rkbexplorer.com
8Complex or opaque properties are semantically the same but have different word selections in describing the

relationship.

6.1. IDENTIFYING EQUIVALENT PROPERTIES BETWEEN LINKED DATASETS 99

LinkedMDB, and articles between DBLP RKB explorer and DBLP L3S datasets. DBLP RKB

explorer and DBLP L3S are two separate datasets for DBLP that use two different ontologies.

Furthermore, the DBLP RKB explorer project had different requirements, where it needed to achieve

high precision and recall on search services compared to DBLP L3S dataset. DBpedia and Freebase

are both multi-domain huge data hubs in LOD with overlapping information but have non-trivial

differences in their schema. Freebase uses more blank nodes, increasing its complexity compared to

DBpedia. LinkedMDB is a specialized dataset for movies and has its own schema which is completely

different from DBpedia. Therefore, the datasets selected for the experiments from LOD are different

from each other in both complexity and variety of data representation.

Measure

Type

DBpedia-

Freebase

(Person)1

DBpedia-

Freebase

(Film)2

DBpedia-

Freebase

(Software)3

DBpedia-

LinkedMDB

(Film)4

DBLP RKB-

DBLP L3S

(Article)5

Average

Our

Algorithm

Precision 0.8758 0.9737 0.6478 0.7560 1.0000 0.8427

Recall 0.8089* 0.5138 0.4339 0.8157 1.0000 0.7145

F measure 0.8410* 0.6727 0.5197 0.7848 1.0000 0.7656

Dice

Similarity

Precision 0.8064 0.9666 0.7659 1.0000 0.0000 0.7078

Recall 0.4777* 0.4027 0.3396 0.3421 0.0000 0.3124

F measure 0.6000* 0.5686 0.4705 0.5098 0.0000 0.4298

Jaro

Similarity

Precision 0.6774 0.8809 0.7755 0.9411 0.0000 0.6550

Recall 0.5350* 0.5138 0.3584 0.4210 0.0000 0.3656

F measure 0.5978* 0.6491 0.4903 0.5818 0.0000 0.4638

WordNet

Similarity

Precision 0.5200 0.8620 0.7619 0.8823 1.0000 0.8052

Recall 0.4140* 0.3472 0.3018 0.3947 0.3333 0.3582

F measure 0.4609* 0.4950 0.4324 0.5454 0.5000 0.4867

Table 6.1: Alignment results of object properties. Experiments are numbered 1 to 5.

Deciding α and k Values

Estimating the values for α and k was done based on the following facts. (1) Data in different datasets

on LOD are not complete and contain similar but not identical information. (2) Representation of

these data is not uniform due to multiple authors and naming preferences. (3) A resource is not

guaranteed to be linked to all matching resources. Because of these reasons, the same property in

two different datasets cannot be expected to have similar values for µ and λ for a higher F value

closer to 1. Therefore, based on the above observations and our empirical evaluation, a threshold

6.1. IDENTIFYING EQUIVALENT PROPERTIES BETWEEN LINKED DATASETS 100

0

0.2

0.4

0.6

0.8

1

0.5 0.6 0.7 0.8 0.9

alpha

Experiment 1

Precision

Recall

F1

0

0.2

0.4

0.6

0.8

1

0.5 0.6 0.7 0.8 0.9

alpha

Experiment 2

Precision

Recall

F1

k=6

0

0.2

0.4

0.6

0.8

1

0.5 0.6 0.7 0.8 0.9

alpha

Experiment 3

Precision

Recall

F1

k=2 0

0.2

0.4

0.6

0.8

1

0.5 0.6 0.7 0.8 0.9

alpha

Experiment 4

Precision

Recall

F1

k=2

0

0.2

0.4

0.6

0.8

1

0.5 0.6 0.7 0.8 0.9

alpha

Experiment 5

Precision

Recall

F1

k=2

k=14

Figure 6.4: Precision, Recall and F measures for varying α values

value closer to 0.5 for α seemed to be appropriate considering F measure. Figure 6.4 further clarifies

this claim in our empirical evaluation showing precision, recall, and F measure for varying α with

the chosen k values. Results presented in Table 6.1 are using 0.5 for α except for experiment 2 where

it is 0.7 for optimal F measure results.

The constant k is also affected by the above reasons and we followed a data driven approach to

approximate a suitable value for k as follows. First the algorithm output is filtered using α=0.5 and

k=2 which means, the lowest possible matching with a positive confidence level9. Then we get the

µ values for property pairs matched using exact string matching, which are not identified by the

algorithm and get the average of the counts as constant k. Our analysis over k suggests that most of

the time, optimal performance for the algorithm is achieved by a value closer to this approximation

of k (default set to 2). Following this approach, we used 14, 6, 2, 2, and 2 for k in the experiments

numbered as 1, 2, 3, 4, and 5 respectively in Table 6.1. Increasing both these thresholds α and k

yields high confidence matches as they demand a higher number of extension matching.

9α¡0.5 is a negative confidence level since less than half of subject-object pairs got matched from common subjects.

6.1. IDENTIFYING EQUIVALENT PROPERTIES BETWEEN LINKED DATASETS 101

Experiment Settings

We compared our bootstrapping based algorithm with two string matching algorithms and WordNet

similarity suggested by [Zhao and Ichise 2012]. We calculated WordNet similarity 10 by searching

for at least one matching object value [Zhao and Ichise 2012] and then applying WordNet similarity

on pre-processed terms of the properties. We tokenized and removed stop words from properties

to calculate WordNet similarity and added Porter’s stemming algorithm for string similarity. The

results shown for these similarities are the optimal ones considering F measure metric. The threshold

values used for string similarity and WordNet similarity algorithms were 0.92 and 0.80 respectively.

For experiment 5, Dice and Jaro similarity didn’t show any matching properties even for a threshold

value of 0.5.

We used three independent reviewers to evaluate the matching of the properties and we chose the

majority vote to determine the correct matches. The evaluators were given some sample matches

(2-3), and if the meaning of the properties were hard to understand by their name (which is the case

for most properties), they were provided with queries to execute and explore details about them, like

instances they connect to and their domain and range. They were not asked specifically to distinguish

between an exact match and a sub-property match in the alignment. For the experiment numbered

1 in Table 6.1, we could not find all possible matches because the total number of combinations is

large for a manual evaluation(∼ 39k pairs). Therefore, we gave evaluators all the mappings found by

the algorithm without any threshold applied (extracted from property lists as shown in Figure 6.3).

Hence, recall and F measure are just approximations and they are marked with an * in Table 6.1 for

experiment 1. Among the above mentioned comparable techniques, in every case, our bootstrapping

based approach showed higher recall and F measures.

10http://www.sussex.ac.uk/Users/drh21/

6.1. IDENTIFYING EQUIVALENT PROPERTIES BETWEEN LINKED DATASETS 102

Matching Category Dataset 1 Dataset 2

String Similarity
db:nationality fb:nationality

db:religion fb:religion

Synonymous
db:occupation fb:profession

db:battles fb:participated in conflicts

Complex Matches
db:screenplay fb:written by

db:doctoralStudents fb:advisees

Table 6.2: Sample of matching properties under different categories. namespaces: db for DBpedia

and fb for Freebase.

Types of Properties Identified

Our algorithm identified different kinds of matching property pairs. It can potentially subsume

approaches that use techniques such as string similarity and synonym checking as shown in Table

6.2 using extensional matching. The sample pairs listed in Table 6.2 are all correctly identified by

our algorithm. To explain example matching pairs in Table 6.2, consider the following observations.

“String Similarity Matches” can be identified using string similarity measures such as Dice’s Co-

efficient or simple character comparison on property names. “Synonymous Matches” are mappings

that can be identified by analyzing synonyms of the property names. For example, “occupation”

and “profession” can be mapped using a dictionary, but interestingly the WordNet approach failed

to match this pair for the provided threshold (showed very low similarity value of 0.5). In fact,

both pairs were missed by the WordNet approach. “Complex Matches” are the last category shown

in Table 6.2 and are harder to identify. All of the approaches outlined in the evaluation missed

this mapping except our algorithm. This is because our approach exploits property extensions

in aligning properties. There are also false positives in our result set. One such property pair is

http://dbpedia.org/property/issue and http://rdf.freebase.com/ns/people.person.children, which hap-

pens to have similar extensions but has different intentions.

6.1. IDENTIFYING EQUIVALENT PROPERTIES BETWEEN LINKED DATASETS 103

6.1.4 Discussion

The results show that our approach can effectively identify equivalent object properties by utilizing

different statistical parameters presented above. It performs well even when complex properties

exist, like in experiments 1 and 5 in terms of F measure metric. Our algorithm also performs well in

terms of precision when datasets contain more literally similar property names as in experiments 2, 3,

and 4, and discovers more interesting matches in every case, showing higher recall, e.g., experiment

5 is about aligning properties in the same domain (publication) with high overlapping information,

but represents data using two completely different ontologies. These two ontologies do not have

similar word selection or synonyms in their schema exemplifying complex data representation typ-

ically found on LOD. Because of this, string similarity based approaches do not perform well and

synonym based approaches also show poor coverage over terms. Therefore, novel techniques such as

ours for discovering equivalent properties on Linked Data (i.e., Complex Matches in Table 6.2) are

indispensable 11.

We selected DBpedia, Freebase, LinkedMDB, and DBLP for our evaluation because of the ex-

istence of many entity co-reference links between their entities, specifically, DBpedia and Free-

base provide diverse and complex property sets. Alignment between DBpedia and Freebase evalu-

ates multi-domain property alignment whereas DBpedia and LinkedMDB covers multi-domain and

specific-domain dataset alignment. The DBLP alignment evaluates our algorithm between specific-

domain datasets. Therefore, our evaluation covers property alignment between different types of

datasets that can arise in the LOD domain. When analyzing results of matching frequency for

property pairs, it was observed that some matching properties do not appear frequently enough.

Consequently, the algorithm’s confidence in picking them as a match is low. This is mainly due

to the nature of properties, as discussed in Section 3. When a random sample set is selected, it

contains instances belonging to various types, e.g., a person type can have instances belonging to

athlete, artist, etc., which have rare properties. We can run the algorithm iteratively for more

11More details can be found at http://wiki.knoesis.org/index.php/Property_Alignment, accessed 04/10/2017

6.1. IDENTIFYING EQUIVALENT PROPERTIES BETWEEN LINKED DATASETS 104

subject instances that have these less frequent property pairs to improve precision. Our algorithm

assumes that there are no duplicate properties in both datasets being aligned. If both datasets have

duplicate properties, it requires additional inferencing mechanism to identify missing pairs, since

only one matching pair from each candidate list is selected.

We observed that certain properties that are mapped as equivalent properties are actually sub-

properties. This happens mainly because we do not distinguish between equivalent properties and

sub-properties. For an example, http://dbpedia.org/property/mother and http://rdf.freebase.com/ns

/people.person.parents are two such properties matched as equivalent, while, in fact, the first is a

sub-property of the second. We would like to distinguish sub-properties in our future experiments for

more fine grained matches. Also, we believe ECR∗ links are useful in general, where many datasets

are linked to central hubs like DBpedia and the algorithm will be able to discover more connections

between resources by finding link paths via these hubs.

We believe our approach has resulted in high quality results compared to existing approaches

because it, (1) does extension matching using entity co-reference links, (2) bootstraps from candi-

date matches and aggregates the results, and (3) makes final alignments using statistical measures

analyzing aggregated confidence of the matching pairs. While, string similarity and synonym match-

ing have been shown to be effective in the past (primarily for literals), they do not have sufficient

coverage for resources as shown in our evaluation. We use owl:sameAs as an entity co-reference

link but its use to link two semantically equivalent instances seems to be controversial in the LOD

community [Halpin et al. 2010]. In spite of well-known shortcomings, (like equating “London” to

“Greater London”), our algorithm is expected to be sufficiently robust for property alignment, be-

cause it is based on aggregating information from a large number of entity equivalence assertions.

In other words, we believe that the effect of a few misused links will not affect the final result much,

because our algorithm does not decide on a property match by analyzing a single matching triple.

Even though the interlinking (entity co-reference) relationships are small compared to the size of

similar instances between datasets today, we expect that these links will become prevalent as the

6.1. IDENTIFYING EQUIVALENT PROPERTIES BETWEEN LINKED DATASETS 105

datasets evolve and are maintained as part of the “linked data life cycle” (with projects such as

http://latc-project.eu/ and http://stack.lod2.eu/). Moreover, we can see other recent successful

efforts in using owl:sameAs networks in the LOD context [Parundekar et al. 2012] [Zhao and Ichise

2012] in spite of these known issues.

We also identified some property pairs which are matched but have incorrect meaning in the

property name. For example, http://dbpedia.org/property/issue and http://rdf.freebase.com/ns/

people.person.children property pair between DBpedia and Freebase. This happened because of

mixed values present in the DBpedia property http://dbpedia.org/property/issue, that has both in-

teger values and names of children as object values. In this case, we can regard this kind of a

property as ambiguous and having noise, which has a negative effect on the matching process. An-

other instance where the algorithm can go wrong is when it encounters special cases where the

two datasets have enough facts for the process to identify two properties as a match, but actually

they are not. For an example, for film domain, it maps http://dbpedia.org/ontology/distributor to

http://rdf.freebase.com/ns/film.film.production companies. This mainly happens because a number

of production companies who produce also distribute films. Thus, they have multiple roles and the

extensional equality may choose to match one of the many roles (extensions match but different

intentions).

6.1.5 Future Work and Conclusion

We have developed and evaluated an extension-based approach to match object properties on linked

datasets. We have defined a computable concept of statistical equivalence of properties to approx-

imate owl:equivalentProperty by leveraging entity co-reference links. Our algorithm is unique and

novel in how it computes extensional equivalence iteratively by building candidate matches in par-

allel. This approach ultimately determines statistically equivalent property pairs. The algorithm is

easily parallelizable as evidenced by our straight forward Map-Reduce implementation. The empiri-

cal evaluation shows that our approach is superior to the state of the art using F measure metric (on

6.2. USING STRUCTURED KNOWLEDGE FOR DOCUMENT SIMILARITY 106

average, F measure gain is in the range 57% - 78%). This suggests that it is possible to align object

properties on LOD datasets effectively. Our approach subsumes conclusions arrived at by string-

based and WordNet-based similarity metrics and discovers more hidden and interesting matches

well-suited for the LOD cloud. However, we can use string-based or WordNet-based approaches to

further improve confidence in our results to minimize coincidental matches. In fact, our data driven

approach can also be adapted to align data-type properties by using similarity metrics for object

values in triples. Another beneficial side effect of object property alignment is that it may be used to

generate or discover potential co-reference links between instances. Furthermore, we expect to test

the algorithm on different levels (strength) of entity co-reference links. In future, we will extend the

coverage to more types of data and discover domains in which properties exist for better alignment.

The alignment problem can be further refined to determine sub-properties in the future that will

help with fine grained data integration tasks.

6.2 Using Structured Knowledge for Document Similarity

Finding related documents is an interesting research problem in text and document retrieval. Key-

word co-occurrence, matching combination of keywords, and cosine similarity of term vectors are

some of the techniques used to match documents. In the simplest form, documents can be in-

dexed using keywords and these keyword indices can be used to retrieve related documents, but this

does not handle semantic similarity between documents. By semantic similarity, we mean matching

that goes beyond lexical similarity computations like exact matching of keywords. Furthermore,

keyword-based systems, including advanced systems like PubMed 12, can handle more than one

keyword search query using keyword co-occurrence but we are interested in retrieval based on triples

and not just concepts (i.e., keywords).

A semantically aware documents retrieval system can help a typical user who needs to get re-

12https://www.ncbi.nlm.nih.gov/pubmed/, accessed 04/10/2017

6.2. USING STRUCTURED KNOWLEDGE FOR DOCUMENT SIMILARITY 107

lated documents even when he is not completely sure of exactly what keywords or phrases to use

for the search. Furthermore, if related documents can be fetched utilizing triples (i.e., seman-

tic predications) which are extracted from document corpus, it can provide more precise and also

semantically matched results. For example, a query to find documents that contain triples like

“ASPIRIN TREATS HEADACHE” is expected to retrieve documents that have drugs related to

ASPIRIN treating diseases like HEADACHE. This is different from a keyword-based search query

where order of keywords does not matter and no semantic matching is performed.

We propose a document retrieval technique based on semantic matching of triples (here on-

wards referred to as predications) extracted from documents in the biomedical domain [Gunaratna

2016]. The Biomedical Knowledge Repository (BKR) [Bodenreider and Rindflesch 2006] is a repos-

itory of integrated biomedical data from literature, structured databases, and terminological knowl-

edge sources like Unified Medical Language System (UMLS) [Bodenreider 2004]. BKR represents

the integrated information in RDF using RDF triples. For example, the RDF triple (predicate)

“lipoproteinx⇒ affects ⇒ inflammatory cells” was extracted by a text mining tool called Sem-

Rep [Rindflesch and Fiszman 2003] from a MEDLINE journal article (with PubMed identifier PMID:

17209178) and states that lipoprotein (denoted as “subject” of the RDF triple) affects (denoted as

“property” of the triple) inflammatory cells (denoted as the “object” of the triple). Each document

can be represented using a set of extracted predications like these. In this approach, we compute the

similarity between sets of predications to derive the similarity between documents. The proposed

approach enriches document retrieval by making it:

1. More precise - searches at the predication level rather than words.

2. More flexible - uses semantic similarity and hence covers more document matches than pure

lexical similarity matches.

3. Semantically aware - our search mechanism can take into consideration the “context” in which

the user searches related documents using sentences.

6.2. USING STRUCTURED KNOWLEDGE FOR DOCUMENT SIMILARITY 108

6.2.1 Related Work

Concept similarity computation is a popular topic in the biomedical research community. There exist

several kinds of similarity measures in the literature that use distance between concepts (number of

nodes/ edge counting), node features (e.g., number of shared ancestors), and information content

(e.g., frequency of a concept in a given corpus) [Batet et al. 2011]. We consider using a simple, yet

powerful measurement to capture ontological similarity of concept pairs. The use of a simple but

effective similarity measure is needed because of the large number of similarity pair computations

required in our application. [Batet et al. 2011] proposed a measure of dissimilarity based on the

shared number of ancestors between two concepts. However, its value is not normalized, making it

unsuitable for our application.

There are other systems that try to index and retrieve related predications. [Cohen et al. 2009]

proposed an indexing mechanism for predications and a retrieval mechanism. Even though it has ad-

vanced retrieval capabilities like leaving part of a predication empty, it has no flexibility in matching

related predications (i.e., no semantic similarity). TripleRank [Franz et al. 2009] is an authoritative

ranking mechanism for triples based on the “popularity” of triples. It is related to our system as it

ranks triples in a given context, but does not consider similarity or relatedness between triples. Our

proposed approach is different from indexing systems and keyword based retrieval mechanisms as it

consists of a flexible semantic matching component.

6.2.2 Approach

We are interested in computing similarity between documents using predications. A document can

be represented as a set of predications. Furthermore, similarity between two sets of predications

belonging to two documents can be used to compute the similarity between the two documents.

Figure 6.5 shows how document - document similarity computation is decomposed into three stages

of similarity computation.

6.2. USING STRUCTURED KNOWLEDGE FOR DOCUMENT SIMILARITY 109

Document

D1

Document

D2
Document – Document

similarity

Predication Set – Predication Set

similarity

Concept – Concept & Rel – Rel

similarity

Predication – Predication

similarity

Predication Set

Set1

Predication Set

Set2

Predication P1 Predication P2

Concept C1 Concept C2
1. Concept level

2. Predication level

3. Predication set

level

Figure 6.5: Overview of the approach.

1. Compute concept - concept and relationship-relationship similarity.

2. Compute predication - predication similarity.

3. Compute predication-set - predication-set similarity.

Predications in the BKR have concept (class) instances for subjects and objects. We are inter-

ested in finding out concept level similarity for predications and hence, we represent each subject

and object of predications with its assigned concept.

Concept - Concept Similarity

Since there are many predications in the BKR, we try to use a simple similarity measure for concept

concept similarity. The idea is to use the proportion of shared ancestors between two concepts

as a measure of their similarity. We leverage hierarchical relations in the UMLS Metathesaurus,

a terminology integration system, to compute the set of ancestors for each concept. We use the

Jaccard coefficient to quantify the overlap between two sets of ancestors. The similarity can be

6.2. USING STRUCTURED KNOWLEDGE FOR DOCUMENT SIMILARITY 110

Sim(CVD, KD) = 1/3 = 0.3

Disease

ancestors of CVD

Cardio Vascular

Disease (CVD)

Kidney

Disease (KD)

ancestors of KD

Heart Valve

Disease (HVD)

Coronary Artery

Disease (CAD)

ancestors of HVD ancestors of CAD

Heart Disease

Cardio Vascular

Disease

Disease

Sim(HVD, CAD) = 3/5= 0.6

(a) (b)

Figure 6.6: Jaccard similarity computation example for two concepts.

computed as shown in Equation 6.4. In this similarity computation, we add the concept itself to its

set of ancestors in order to preserve high similarity for concepts that appear lower in the hierarchy.

Figure 6.6 (a) and (b) show the behavior of Jaccard similarity computation for concepts. When

concepts are higher in the concept hierarchy, they have very abstract meaning and hence, their

similarity is expected to be lower (Figure 6.6 (a)) than the ones that appear lower in the hierarchy

where they have very specific meaning (Figure 6.6 (b)). The Jaccard similarity value computed in

this way varies between 0 and 1.

Jaccard(C1, C2)) =
shared ancestors between C1 and C2

total concepts in C1 and C2
(6.4)

Predication - Predication Similarity

We compute the similarity between two predications as the average pairwise similarity of subject,

predicate, and objects pairs. Similarity between a predication P1 and predication P2 denoted as

Sim(P1, P2) is computed as shown in Equation 6.5. Ws, Wr, and Wo are weights associated with

similarity values between subjects, predicates, and objects, respectively. Since we get the average

similarity over subject, predicate, and object pairs and each similarity value is between 0 and 1,

6.2. USING STRUCTURED KNOWLEDGE FOR DOCUMENT SIMILARITY 111

Entire intestinal epithelium part of Rattus norvegicus (rat)

Large intestine part of Equus caballus (horse)

C1280750 C0034693

C0021851 C0019944

Predication P1

Predication P2

0
.5

6
2
1

1

0
.7

0
6
8

0
.7

5
6
3

Sim(P1,P2) =
Ws *Sim(C1, C2) += Wp * Sim(R1, R2) + Wo * Sim(O1, O2)

(Ws + Wp + Wo)

when, Ws = Wp = Wo = 1

Similarity = (0.5621 + 1 + 0.7068) / 3

= 0.7563

Figure 6.7: predication - predication similarity computation example for two predicates.

Sim(P1, P2) is always between 0 and 1.

Sim(P1, P2)) =
Ws ∗ Sim(S1, S2) + Wr ∗ Sim(R1, R2) + Wo ∗ Sim(O1, O2)

Ws + Wr + Wo
(6.5)

An example similarity computation of two predications is shown in Figure 6.7. In the example,

all weights are equal to 1.

Predication-set - Predication-set Similarity

Similarity between sets of predications is computed according to the formula shown in Equation 6.6.

This is an accepted technique to compute the similarity between two sets [Azuaje et al. 2005] based

on the similarity between their members. The intuition is to compute predication predication

similarity between the two sets in both directions picking the maximum value for each predication

and taking the average across the total number of predications.

Sim(SetS1, SetS2)) =
1

m+ n
∗ (Σk maxp(Sim(Pk, Pp)) + Σp maxk(Sim(Pk, Pp))) (6.6)

6.2. USING STRUCTURED KNOWLEDGE FOR DOCUMENT SIMILARITY 112

6.2.3 Evaluation

For our evaluation, we selected a subset of articles from MEDLINE and retrieved their predications

from the 2013AB version of the BKR. Our evaluation is limited in size and only serves as a proof

of concept for our proposed approach. The document sample for the evaluation is selected as

follows. First, we randomly selected 30 documents from MEDLINE citations. Then, for each of

these documents, we retrieved the top 30 related citations from the PubMed related citation search.

Our document sample consists of 907 documents (when duplicate documents are removed).

Implementation Details

The prototype is developed using the Java programming language and we used the Virtuoso 13 triple

store to store predications. Similarity values for concept and relationship pairs, predication pairs,

and document pairs are stored in memory as key-value pairs using BerkeleyDB 14 database for rapid

access.

Results

We measure precision, recall, and F-measure against the PubMed related citation gold standard.

Computation of precision, recall, and F-measure are defined in Equations 6.7, 6.8, and 6.9, respec-

tively.

precision =
releveant documents ∩ # retrieved documents

relevant documents
(6.7)

recall =
releveant documents ∩ # retrieved documents

retrieved documents
(6.8)

13http://virtuoso.openlinksw.com/, accessed 04/10/2017
14http://www.oracle.com/technetwork/database/databasetechnologies/berkeleydb/overview/index.html, ac-

cessed 04/10/2017

6.2. USING STRUCTURED KNOWLEDGE FOR DOCUMENT SIMILARITY 113

top top top top top top5 10 15 20 25 30

Precision 0.7733 0.7 0.6244 0.5449 0.4827 0.4433

Recall 0.1289 0.2333 0.3122 0.3633 0.4022 0.4433

F Measure 0.221 0.35 0.4163 0.436 0.4388 0.4433

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Evaluation Metrics

of retrieved

top documents

Figure 6.8: Results against the PubMed related citation gold standard using top n documents.

F Measure = 2 ∗ precision ∗ recall
precision + recall

(6.9)

The preliminary results against the PubMed related citation gold standard is shown in Figure 6.8.

We measured precision, recall, and F-measure for the top n documents as shown in Figure 6.8. For

the top 5 documents, 77% of the documents retrieved by our approach are relevant, demonstrating

that it can retrieve top documents with high precision. The reason for lower recall is that we did

not adjust weights in the predicationpredication similarity computation and prune similarity values

that only matched part of the predications. Matching only part of the predications does not mean

they are similar as they can be out of context.

6.2.4 Discussion

Our results showed promise for a new way of computing document similarity using semantic predi-

cations. Moreover, we can further improve the precision and recall as follows.

• Improving precision: We have not filtered out predication pairs that have very low similarity

values. This artificially lowers the document - document similarity ranking. Introducing a

threshold to filter out low similarity predication pairs can improve precision.

6.2. USING STRUCTURED KNOWLEDGE FOR DOCUMENT SIMILARITY 114

• Improving recall: We have not experimented with tuning weights for subject, predicate, and

object pairs in predication predication similarity computation. Learning suitable weights for

the related document retrieval use case can improve recall as it can remove noise in predication

similarity computation.

Advantages

Our bag-of-predications approach has clear advantage over bag-of-words document retrieval systems

as it is semantically-aware. It makes use of hierarchical relationships between concepts, as well as

hierarchies of relationships, to measure concept similarity. Concept similarity adds flexibility in

retrieving related documents, whereas bag-of-words approaches can only leverage word occurrence

or co-occurrence (i.e., utilizing probabilities). Because it is based on predications, not keywords, our

approach can also provide more precise results, as it captures the context of the query. For example,

the predication “ASPIRIN TREATS HEADACHE” is not simply the concatenation of the three

keywords “ASPIRIN”, “TREATS”, and “HEADACHE”. It expresses the precise treatment relation

between the drug and the disease. For this reason, our approach is more precise than traditional

document retrieval models.

Furthermore, we could also use predication predication similarity to provide question answering

or exploration capabilities to a user. For example, a user can ask a question like “give me related

predications to ASPIRIN TREATS HEADACHE” or “find <what?> TREATS HEADACHE”. In

the first example, the user can explore related predications and in the second example, he can

find out what drugs (or interventions) can treat headache. Further, this type of semantics-based

ranking methods can be used in intelligent assistants [Nezhad et al. 2017] to make use of background

knowledge.

Limitations

There are three different limitations with the current prototype. They are as follows.

6.2. USING STRUCTURED KNOWLEDGE FOR DOCUMENT SIMILARITY 115

1. Limitations with SemRep

(a) SemRep uses a template-based predication extraction and hence it can miss extraction of

some predications from articles.

(b) Because SemRep does not handle co-reference resolution of named entities, it cannot extract

predication across sentences and hence it can miss extraction of predications that span

across sentences.

2. Limitations with similarity

(a) ConceptConcept similarity needs to be evaluated in UMLS. The simple notion of shared

proportion of ancestors between two concepts (measured with the Jaccard coefficient) has

never been evaluated on UMLS hierarchies, even though it has been tested in other domain

datasets like genes.

(b) Weights of the predicationpredication similarity needs to be calibrated for better perfor-

mance. As of now, we use the simplest representation of weights, with all weights equal to

1.

(c) The scale of the current evaluation is small. Moreover, our evaluation is limited in scope

(i.e., against PubMed related citation search results.)

3. The current prototype cannot handle the large number of similarity computations required to

scale to the whole MEDLINE corpus.

6.2.5 Future Work and Conclusion

Future Work

We plan to evaluate our concept concept similarity metric on the UMLS, and to adjust and learn

weights empirically for predication similarity. Also a large-scale evaluation with an independent test

dataset (i.e., other than PubMed related citations) needs to be conducted. We also would like to

6.2. USING STRUCTURED KNOWLEDGE FOR DOCUMENT SIMILARITY 116

address the scalability issues related to computation by adapting cluster-based computations and

use efficient data storage for large indices. It is worthwhile to investigate how to further improve

precision and recall by adapting a threshold variable and weights adjustment.

Conclusion

We proposed a document retrieval approach that leverages semantic predications (in other terms,

triples) extracted from these documents. We introduced the idea of using a bag-of-predications ap-

proach instead of bag-of-words approach for representing documents. We showed that our approach

can provide precise and flexible results. It is also suggested that the outcome of predicationpredica-

tion similarity can be used for question answering and knowledgebase exploration purposes. With

the suggested improvements in the near future, we believe that the proposed approach can make a

significant real world impact by a use case implementation for document retrieval.

7

Conclusion and Future Work

This dissertation focuses on entity summarization at two different levels: (i) single entity summa-

rization and (ii) multi-entity summarization.

7.1 Single Entity Summarization

We first proposed the FACES single entity summarization approach that considered diversity, impor-

tance, and uniqueness in selecting features for the summary. It makes use of schema level knowledge

of the values of features (type assignments of the entities) and external lexical-database categoriza-

tions (hypernyms) to conceptually group features of a given entity. These groups are called facets

and they are more semantically related than syntactically related compared to the state-of-the-art

groupings available for triples/features. We adapted Cobweb clustering algorithm, which is concep-

tual, hierarchical, and incremental in nature, to create facets. These facets help FACES to create

diverse entity summaries where the diversity comes at a conceptual level. For ranking the features,

we used a tf-idf based ranking scheme that focused on informativeness of the feature and popularity

(i.e. frequency) of the values of the features. We showed that FACES achieved excellent results com-

pared to comparable state-of-the-art systems using object properties through a new gold standard

dataset created using DBpedia and blinded user study.

117

7.1. SINGLE ENTITY SUMMARIZATION 118

One limitation that FACES has is that it can successfully group features belonging to object

properties as they have types assigned to their values that FACES uses in creating facets. We ex-

tended FACES and proposed FACES-E that can group both object and datatype properties and

select features for entity summaries. FACES-E computes types for literals whenever possible and en-

riches datatype properties with type semantics. We achieve this by: (i) exact and semantic matching

of the focus term to class labels, and (ii) spotting entities related to the focus term and retrieving

their types. This is a significant contribution in terms of making datatype properties inter-operable

with object properties in knowledge graphs. Further, this can facilitate applications and use-cases

like entity summarization, data integration, and dataset profiling. FACES-E improved upon the

ranking criteria for features by extending ranking measures to both object and datatype properties

and proposed to rank the facets before selecting the entity summaries. Special consideration was

given in proposing feature ranking for datatype properties as their values are not represented by

URIs. FACES-E was evaluated against comparable state-of-the-art systems by extending the gold

standard used in FACES. The results confirmed that FACES-E could generate better quality en-

tity summaries considering diversity, importance, and informativeness aspects for both object and

datatype properties.

Broader Impact: The single entity summarization approach discussed in this dissertation (com-

bining FACES and FACES-E) generates diverse and comprehensive summaries. These summaries

can be used in applications like Web search to assist users to quickly understand the information

contained in entities of interest. Commercial scale applications like Google Search and Bing al-

ready use entity summaries in their search interfaces and the work presented in this dissertation

can be regarded as in the same level of interest. Further, the methods and ideas we presented to:

(i) automatically and incrementally group features, (ii) type literals in knowledge graphs, and (iii)

diversify entity summaries can be certainly used to complement existing techniques not limiting to

entity summarization. For example, the conceptual grouping methods can be used to analyze and

semantically group triples in datasets.

7.2. MULTI-ENTITY SUMMARIZATION 119

7.1.1 Future Work

We explored a simple tf-idf based ranking for FACES and FACES-E that could be complemented

with complex graph-based ranking algorithms like PageRank and authority ranking measures for

improved summary quality. The grouping algorithm adapted from Cobweb can work with streaming

data. So, FACES and FACES-E can be used in streaming data environment to summarize dynamic

entity facts like in news feeds. We have not specifically measured the grouping quality of the proposed

approach and this can be further evaluated and improved, even to perform independently to entity

summarization as a conceptual grouping framework for RDF triples.

We also proposed a component to compute types for literals in datatype properties in RDF

datasets. Noise in these literals is a common problem and a way to filter out values that are noise is

required. Further, some datatype properties are considered as labeling properties and they should

not be typed (e.g., “familyName”). We manually filtered such properties in our experiments and an

automatic way of identifying these properties will be a significant contribution not only to typing

the literals but other data processing applications like dataset profiling and entity linking. We have

not proposed a method to type numeric property values and also a proper ranking mechanism.

Developing proper ranking measures for them can improve the summary quality and coverage of

features.

7.2 Multi-Entity Summarization

Both FACES and FACES-E approaches deal with single entity summaries. That is, they cannot

process more than one entity at a time to create the summaries. Sometimes, it is important to capture

the context of a collection of entities in the entity summaries. Therefore, we proposed REMES

that can process multiple entities and select related features to each other for entity summaries

in addition to having diversity and importance of features preserved within each entity summary.

Multi-entity summarization is computationally expensive as we have to deal with more than one

7.2. MULTI-ENTITY SUMMARIZATION 120

entity and probably belonging to different types. To achieve the aforementioned qualities in the

entity summaries, we mapped the QMKP problem and adapted GRASP optimization algorithm.

We modified how the pairwise profits are computed for feature pairs in QMKP and also modified some

optimization steps to guarantee the intra-entity diversity. To measure the relatedness, we adapted

RDF2Vec model and hypernym-based expansion proposed in FACES with Jaccard similarity. We

compared the proposed approach with comparable single entity summarization approaches using

a questionnaire based on Likert scale. The results showed that our approach performed better in

creating multi-entity summaries.

Broader Impact: The relatedness-based multi entity summarization (REMES) approach dis-

cussed in this dissertation addressed the problem of generating multiple entity summaries consider-

ing a collection of entities, giving priority to intra-entity importance and diversity and inter-entity

relatedness. This can be used to facilitate complex Web browsing needs such as analyzing and

summarizing Web documents (and also multiple entity search queries) where multiple entities are

found. Further, these methods could be used in information dissemination efforts (e.g., NEWS sites)

to quickly analyze connections between the entities and also get quick understanding of them.

7.2.1 Future Work

Our multi-entity summarization approach mainly relies on the GRASP optimization algorithm (to

solve QMKP) and relatedness and importance measures. Evaluating the performance of GRASP

and further improving it to work for multi-entity summarization problem is a possible next step.

Further, we used graph-based RDF2Vec model to get the entity-entity relatedness and we can try in-

corporating textual relatedness measures for improved summary quality. Because of the complexity

involved in processing multiple entities, GRASP optimization algorithm provides reasonable sum-

maries but the summary quality can be further improved when and if suitable processing techniques

become available.

References

Antoniou, G. and Van Harmelen, F. 2004. A semantic web primer. MIT press.

Anyanwu, K., Maduko, A., and Sheth, A. 2005. Semrank: ranking complex relationship search

results on the semantic web. In Proceedings of the 14th international conference on World Wide

Web. ACM, 117–127.

Auer, S., Lehmann, J., and Hellmann, S. 2009. Linkedgeodata: Adding a spatial dimension to the

web of data. In Proceedings of the International Semantic Web Conference. Springer, 731–746.

Auer, S., Lehmann, J., Ngomo, A.-C. N., and Zaveri, A. 2013. Introduction to linked data and

its lifecycle on the web. In Reasoning Web. Semantic Technologies for Intelligent Data Access.

Springer, 1–90.

Azuaje, F., Wang, H., and Bodenreider, O. 2005. Ontology-driven similarity approaches to

supporting gene functional assessment. In Proceedings of the ISMB’2005 SIG meeting on Bio-

ontologies. 9–10.

Batet, M., Sánchez, D., and Valls, A. 2011. An ontology-based measure to compute semantic

similarity in biomedicine. Journal of biomedical informatics 44, 1, 118–125.

Berners-Lee, T. 1989. Information management: A proposal.

Berners-Lee, T. 2006. Linked data-design issues.

121

7.2. MULTI-ENTITY SUMMARIZATION 122

Berners-Lee, T., Fischetti, M., and Foreword By-Dertouzos, M. L. 1999. Weaving the Web:

The original design and ultimate destiny of the World Wide Web by its inventor. HarperInfor-

mation.

Berners-Lee, T., Hendler, J., Lassila, O., et al. 2001. The semantic web. Scientific ameri-

can 284, 5, 28–37.

Bodenreider, O. 2004. The unified medical language system (umls): integrating biomedical termi-

nology. Nucleic acids research 32, suppl 1, D267–D270.

Bodenreider, O. and Rindflesch, T. 2006. Advanced library services: Developing a biomed-

ical knowledge repository to support advanced information management applications. Lister

Hill National Center for Biomedical Communications, National Library of Medicine, Bethesda,

Maryland .

Brickley, D. and Guha, R. V. 2004. {RDF vocabulary description language 1.0: RDF schema}.

Cheatham, M. 2014. The properties of property alignment on the semantic web. Ph.D. thesis, Wright

State University.

Cheng, G., Jin, C., and Qu, Y. 2016. Hieds: A generic and efficient approach to hierarchical dataset

summarization. In Proceedings of the Twenty-Fifth International Joint Conference on Artificial

Intelligence.

Cheng, G., Tran, T., and Qu, Y. 2011. Relin: relatedness and informativeness-based centrality for

entity summarization. In The Semantic Web–ISWC 2011. Springer, 114–129.

Cheng, G., Xu, D., and Qu, Y. 2015a. C3d+ p: A summarization method for interactive entity

resolution. Web Semantics: Science, Services and Agents on the World Wide Web 35, 203–213.

Cheng, G., Xu, D., and Qu, Y. 2015b. Summarizing entity descriptions for effective and efficient

human-centered entity linking. In Proceedings of the 24th International Conference on World

Wide Web. International World Wide Web Conferences Steering Committee, 184–194.

7.2. MULTI-ENTITY SUMMARIZATION 123

Cohen, T., Schvaneveldt, R. W., and Rindflesch, T. C. 2009. Predication-based semantic

indexing: permutations as a means to encode predications in semantic space. In Proceedings of

the AMIA.

Collins, M. 2003. Head-driven statistical models for natural language parsing. Computational lin-

guistics 29, 4, 589–637.

Dean, M., Schreiber, G., Bechhofer, S., van Harmelen, F., Hendler, J., Horrocks, I.,

McGuinness, D. L., Patel-Schneider, P. F., and Stein, L. A. 2004. Owl web ontology

language reference. W3C Recommendation February 10.

Ding, L., Pan, R., Finin, T., Joshi, A., Peng, Y., and Kolari, P. 2005. Finding and ranking

knowledge on the semantic web. In The Semantic Web–ISWC 2005. Springer, 156–170.

Ding, L., Shinavier, J., Shangguan, Z., and McGuinness, D. 2010. Sameas networks and beyond:

analyzing deployment status and implications of owl: sameas in linked data. The Semantic Web–

ISWC 2010 , 145–160.

Dong, X., Gabrilovich, E., Heitz, G., Horn, W., Lao, N., Murphy, K., Strohmann, T.,

Sun, S., and Zhang, W. 2014. Knowledge vault: A web-scale approach to probabilistic knowl-

edge fusion. In Proceedings of the 20th ACM SIGKDD international conference on Knowledge

discovery and data mining. ACM, 601–610.

Ell, B., Vrandečić, D., and Simperl, E. 2011. Labels in the web of data. In Proceedings of the

International Semantic Web Conference. Springer, 162–176.

Fang, Y., Si, L., Somasundaram, N., Al-Ansari, S., Yu, Z., and Xian, Y. 2010. Purdue at trec

2010 entity track: A probabilistic framework for matching types between candidate and target

entities. In Proceedings of the TREC.

Fisher, D. H. 1987. Knowledge acquisition via incremental conceptual clustering. Machine learn-

ing 2, 2, 139–172.

7.2. MULTI-ENTITY SUMMARIZATION 124

Franz, T., Schultz, A., Sizov, S., and Staab, S. 2009. Triplerank: Ranking semantic web data

by tensor decomposition. In The Semantic Web-ISWC 2009. Springer, 213–228.

Freitas, A. and Curry, E. 2014. Natural language queries over heterogeneous linked data graphs:

A distributional-compositional semantics approach. In Proceedings of the 19th international

conference on Intelligent User Interfaces. ACM, 279–288.

Freitas, A., Curry, E., Oliveira, J. G., and O’Riain, S. 2012. Querying heterogeneous datasets

on the linked data web: challenges, approaches, and trends. IEEE Internet Computing 16, 1,

24–33.

Freitas, A., Sales, J. E., Handschuh, S., and Curry, E. 2015. How hard is this query? measuring

the semantic complexity of schema-agnostic queries. IWCS 2015 , 294.

Gallo, G., Hammer, P. L., and Simeone, B. 1980. Quadratic knapsack problems. In Combinatorial

optimization. Springer, 132–149.

Gambhir, M. and Gupta, V. 2017. Recent automatic text summarization techniques: a survey.

Artificial Intelligence Review 47, 1, 1–66.

Gennari, J. H., Langley, P., and Fisher, D. 1989. Models of incremental concept formation.

Artificial intelligence 40, 1-3, 11–61.

Gruber, T. R. et al. 1993. A translation approach to portable ontology specifications. Knowledge

acquisition 5, 2, 199–220.

Gunaratna, K. 2016. Document retrieval using predication similarity. arXiv preprint

arXiv:1604.05754 .

Gunaratna, K., Cheng, G., Thalhammer, A., and Liu, Q. 2016. Results of the 2016 entity

summarization evaluation campaign (ensec 2016).

7.2. MULTI-ENTITY SUMMARIZATION 125

Gunaratna, K., Lalithsena, S., and Sheth, A. 2014. Alignment and dataset identification of

linked data in semantic web. Wiley Interdisciplinary Reviews: Data Mining and Knowledge

Discovery 4, 2, 139–151.

Gunaratna, K., Thirunarayan, K., Jain, P., Sheth, A., and Wijeratne, S. 2013. A statistical

and schema independent approach to identify equivalent properties on linked data. In Proceedings

of the 9th International Conference on Semantic Systems. ACM, 33–40.

Gunaratna, K., Thirunarayan, K., and Sheth, A. 2015. Faces: Diversity-aware entity summa-

rization using incremental hierarchical conceptual clustering. In Proceedings of the Twenty-Ninth

AAAI Conference on Artificial Intelligence.

Gunaratna, K., Thirunarayan, K., Sheth, A., and Cheng, G. 2016. Gleaning types for literals

in rdf triples with application to entity summarization. In Proceedings of the Extended Semantic

Web Conference. Springer, 85–100.

Gunaratna, K., Yazdavar, A. H., Thirunarayan, K., Sheth, A., and Cheng, G. 2017.

Relatedness-based multi-entity summarization. In Proceedings of the Twenty-Sixth International

Joint Conference on Artificial Intelligence (IJCAI).

Hachey, B., Radford, W., Nothman, J., Honnibal, M., and Curran, J. R. 2013. Evaluating

entity linking with wikipedia. Artificial intelligence 194, 130–150.

Halpin, H., Hayes, P. J., McCusker, J. P., McGuinness, D. L., and Thompson, H. S. 2010.

When owl: sameas isnt the same: An analysis of identity in linked data. In The Semantic Web–

ISWC 2010. Springer, 305–320.

Han, L., Kashyap, A., Finin, T., Mayfield, J., and Weese, J. 2013. Umbc ebiquity-core: Se-

mantic textual similarity systems. In Proceedings of the Second Joint Conference on Lexical and

Computational Semantics. Vol. 1. 44–52.

Hassanzadeh, O. and Consens, M. P. 2009. Linked movie data base. In Proceedings of the LDOW.

7.2. MULTI-ENTITY SUMMARIZATION 126

Hitzler, P., Krotzsch, M., and Rudolph, S. 2009. Foundations of semantic web technologies.

CRC Press.

Jones, K. S. 2007. Automatic summarising: The state of the art. Information Processing & Manage-

ment 43, 6, 1449–1481.

Joshi, A. K., Hitzler, P., and Dong, G. 2013. Logical linked data compression. In Proceedings of

the Extended Semantic Web Conference. Springer, 170–184.

Joshi, A. K., Jain, P., Hitzler, P., Yeh, P. Z., Verma, K., Sheth, A. P., and Damova, M.

2012. Alignment-based querying of linked open data. In Proceedings of the OTM Confederated

International Conferences” On the Move to Meaningful Internet Systems”. Springer, 807–824.

Lehmann, J., Isele, R., Jakob, M., Jentzsch, A., Kontokostas, D., Mendes, P. N., Hell-

mann, S., Morsey, M., van Kleef, P., Auer, S., et al. 2015. Dbpedia–a large-scale,

multilingual knowledge base extracted from wikipedia. Semantic Web 6, 2, 167–195.

Mani, I. 2001. Automatic summarization. Vol. 3. John Benjamins Publishing.

Manola, F., Miller, E., McBride, B., et al. 2004. Rdf primer. W3C recommendation 10, 1-107,

6.

Mena, E., Kashyap, V., Sheth, A., and Illarramendi, A. 1996. Observer: An approach for query

processing in global information systems based on interoperation across pre-existing ontologies.

In Proceedings of the First IFCIS International Conference on Cooperative Information Systems.

IEEE, 14–25.

Mendes, P. N., Jakob, M., Garćıa-Silva, A., and Bizer, C. 2011. Dbpedia spotlight: shedding

light on the web of documents. In Proceedings of the 7th International Conference on Semantic

Systems. ACM, 1–8.

7.2. MULTI-ENTITY SUMMARIZATION 127

Michalski, R. S. 1980. Knowledge acquisition through conceptual clustering: A theoretical framework

and an algorithm for partitioning data into conjunctive concepts. Journal of Policy Analysis and

Information Systems 4, 3, 219–244.

Miles, A. and Bechhofer, S. 2008. Skos simple knowledge organization system reference. W3C

Recommendation.

Miller, G. A., Beckwith, R., Fellbaum, C., Gross, D., and Miller, K. J. 1990. Introduction

to wordnet: An on-line lexical database. International journal of lexicography 3, 4, 235–244.

Mimno, D., Wallach, H. M., Talley, E., Leenders, M., and McCallum, A. 2011. Optimizing

semantic coherence in topic models. In Proceedings of the Conference on Empirical Methods in

Natural Language Processing. Association for Computational Linguistics, 262–272.

Nadeau, D. and Sekine, S. 2007. A survey of named entity recognition and classification. Lingvis-

ticae Investigationes 30, 1, 3–26.

Nenkova, A. and McKeown, K. 2012. A survey of text summarization techniques. In Mining Text

Data. Springer, 43–76.

Newman, D., Lau, J. H., Grieser, K., and Baldwin, T. 2010. Automatic evaluation of topic

coherence. In Proceedings of the 2010 Conference of the North American Chapter of the ACL:

Human Language Technologies. ACL, 100–108.

Nezhad, H. R. M., Gunaratna, K., and Cappi, J. 2017. eassistant: Cognitive assistance for

identification and auto-triage of actionable conversations. In Proceedings of the 26th Interna-

tional Conference on World Wide Web Companion. International World Wide Web Conferences

Steering Committee, 89–98.

Nguyen, K., Ichise, R., and Le, B. 2012. Slint: A schema-independent linked data interlinking

system. Ontology Matching , 1.

7.2. MULTI-ENTITY SUMMARIZATION 128

Nunes, B. P., Mera, A., Casanova, M. A., Fetahu, B., Leme, L. A. P. P., and Dietze, S.

2013. Complex matching of rdf datatype properties. In International Conference on Database

and Expert Systems Applications. Springer, 195–208.

Parundekar, R., Knoblock, C. A., and Ambite, J. L. 2012. Discovering concept coverings in

ontologies of linked data sources. In The Semantic Web–ISWC 2012. Springer, 427–443.

Paulheim, H. and Bizer, C. 2013. Type inference on noisy rdf data. In The Semantic Web–ISWC

2013. Springer, 510–525.

Qian, R. 2013. Understand your world with bing. Bing search blog, Mar .

Rindflesch, T. C. and Fiszman, M. 2003. The interaction of domain knowledge and linguistic

structure in natural language processing: interpreting hypernymic propositions in biomedical

text. Journal of biomedical informatics 36, 6, 462–477.

Ristoski, P. and Paulheim, H. 2016. Rdf2vec: Rdf graph embeddings for data mining. In Proceedings

of the International Semantic Web Conference. Springer, 498–514.

Semantic-Web. 2017. The semantic web. https://www.w3.org/standards/semanticweb/#w3c_

content_body. [Online; accessed April-05-2017].

Shah, I. and Sheth, A. 1999. Infoharness: managing distributed, heterogeneous information. IEEE

Internet Computing 3, 6, 18–28.

Sheth, A., Arpinar, I. B., and Kashyap, V. 2004. Relationships at the heart of semantic web:

Modeling, discovering, and exploiting complex semantic relationships. In Enhancing the Power

of the Internet. Springer, 63–94.

Sheth, A., Avant, D., and Bertram, C. 2001. System and method for creating a semantic web

and its applications in browsing, searching, profiling, personalization and advertising. US Patent

6,311,194.

7.2. MULTI-ENTITY SUMMARIZATION 129

Sheth, A., Bertram, C., Avant, D., Hammond, B., Kochut, K., and Warke, Y. 2002. Man-

aging semantic content for the web. IEEE Internet Computing 6, 4, 80–87.

Sheth, A., Bertram, C., and Shah, K. 1999. Video anywhere: a system for searching and managing

distributed heterogeneous video assets. ACM SIGMOD Record 28, 1, 104–114.

Sheth, A. and Thirunarayan, K. 2012. Semantics empowered web 3.0: managing enterprise, social,

sensor, and cloud-based data and services for advanced applications. Synthesis Lectures on Data

Management 4, 6, 1–175.

Sheth, A. P. 2000. Semantic web and information brokering: Opportunities, commercialization, and

challenges.

Shvaiko, P. and Euzenat, J. 2013. Ontology matching: state of the art and future challenges. IEEE

Transactions on knowledge and data engineering 25, 1, 158–176.

Singhal, A. 2012. Introducing the knowledge graph: things, not strings. Official Google Blog, May .

Sleeman, J., Alonso, R., Li, H., Pope, A., and Badia, A. 2012. Opaque attribute alignment.

In Proceedings of the 28th IEEE International Conference on Data Engineering Workshops

(ICDEW). IEEE, 17–22.

Sleeman, J. and Finin, T. 2013. Type prediction for efficient coreference resolution in heterogeneous

semantic graphs. In Proceedings of the Seventh IEEE International Conference on Semantic

Computing (ICSC). IEEE, 78–85.

Sydow, M., Piku la, M., and Schenkel, R. 2013. The notion of diversity in graphical entity

summarisation on semantic knowledge graphs. Journal of Intelligent Information Systems 41, 2,

109–149.

Thalhammer, A., Knuth, M., and Sack, H. 2012. Evaluating entity summarization using a game-

based ground truth. In The Semantic Web–ISWC 2012. Springer, 350–361.

7.2. MULTI-ENTITY SUMMARIZATION 130

Thalhammer, A., Lasierra, N., and Rettinger, A. 2016. Linksum: using link analysis to summa-

rize entity data. In Proceedings of the International Conference on Web Engineering. Springer,

244–261.

Thalhammer, A. and Rettinger, A. 2014. Browsing dbpedia entities with summaries. In The

Semantic Web: ESWC 2014 Satellite Events. Springer, 511–515.

Tonon, A., Catasta, M., Demartini, G., Cudré-Mauroux, P., and Aberer, K. 2013. Trank:

Ranking entity types using the web of data. In The Semantic Web–ISWC 2013. Springer, 640–

656.

Tran, Q., Ichise, R., and Ho, B. 2011. Cluster-based similarity aggregation for ontology matching.

Ontology Matching , 142.

Tylenda, T., Sozio, M., and Weikum, G. 2011. Einstein: physicist or vegetarian? summarizing

semantic type graphs for knowledge discovery. In Proceedings of the 20th international conference

companion on World wide web. ACM, 273–276.

Web-Statistics. 2017. The size of the world wide web (the internet). http://www.

worldwidewebsize.com/. [Online; accessed April-05-2017].

Xu, D., Cheng, G., and Qu, Y. 2014. Facilitating human intervention in coreference resolution

with comparative entity summaries. In The Semantic Web: Trends and Challenges. Springer,

535–549.

Yan, J., Wang, Y., Gao, M., and Zhou, A. 2016. Context-aware entity summarization. In Proceed-

ings of the International Conference on Web-Age Information Management. Springer, 517–529.

Yang, Z., Wang, G., and Chu, F. 2013. An effective grasp and tabu search for the 0–1 quadratic

knapsack problem. Computers & Operations Research 40, 5, 1176–1185.

Zhao, L. and Ichise, R. 2012. Graph-based ontology analysis in the linked open data. In Proceedings

of the 8th International Conference on Semantic Systems. ACM, 56–63.

